skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Achenbach, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report on a measurement of elastic electron scattering on argon performed with a novel cryogenic gas-jet target at the Mainz Microtron accelerator MAMI. The luminosity is estimated with the thermodynamical parameters of the target and by comparison to a calculation in distorted-wave Born approximation. The cross section, measured at new momentum transfers of 1.24 $$\hbox {fm}^{-1}$$ fm - 1 and 1.55 $$\hbox {fm}^{-1}$$ fm - 1 is in agreement with previous experiments performed with a traditional high-pressure gas target, as well as with modernab-initiocalculations employing state-of-the-art nuclear forces from chiral effective field theory. The nearly background-free measurement highlights the optimal properties of the gas-jet target for elements heavier than hydrogen, enabling new applications in hadron and nuclear physics. 
    more » « less
  2. Abstract A new type of radio frequency (RF) timing technique is presented. It is based on a helical deflector, which performs circular or elliptical sweeps of photo- or secondary electrons, accelerated to keV energies, by means of RF fields in the 500–1000 MHz range. By converting a time distribution of the electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing, similar to streak cameras. Detection of the scanned electrons, using a position sensitive detector based on microchannel plates and a delay line anode, resulted in a timing resolution of 10 ps, which can be potentially improved to 1 ps. RF-Timer-based single photon and heavy ion detectors have potential applications in different fields of science and industry, which include high energy nuclear physics and imaging technologies. This technique could play a crucial role in developing of sub 10 ps Time-of-Flight Positron Emission Tomography. 
    more » « less
  3. Free, publicly-accessible full text available September 1, 2026
  4. Inclusive electron scattering cross sections off a hydrogen target at a beam energy of 10.6 GeV have been measured with data collected from the CLAS12 spectrometer at Jefferson Laboratory. These first absolute cross sections from CLAS12 cover a wide kinematic area in invariant mass W of the final state hadrons from the pion threshold up to 2.5 GeV for each bin in virtual photon four-momentum transfer squared Q 2 from 2.55 to 10.4 GeV 2 owing to the large scattering angle acceptance of the CLAS12 detector. Comparison of the cross sections with the resonant contributions computed from the CLAS results on the nucleon resonance electroexcitation amplitudes has demonstrated a promising opportunity to extend the information on their Q 2 evolution up to 10 GeV 2 . Together these results from CLAS and CLAS12 offer good prospects for probing the nucleon parton distributions at large fractional parton momenta x for W < 2.5 GeV, while covering the range of distances where the transition from the strongly coupled to the perturbative regimes is expected. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  5. Free, publicly-accessible full text available September 1, 2026
  6. We present the first threefold differential measurement for neutral-pion multiplicity ratios produced in semi-inclusive deep-inelastic electron scattering on carbon, iron, and lead nuclei normalized to deuterium from CLAS at Jefferson Lab. We found that the neutral-pion multiplicity ratio is maximally suppressed for the leading hadrons (energy fraction z 1), suppression varying from 25% in carbon up to 75% in lead. An enhancement of the multiplicity ratio at low z and high p T 2 is observed, suggesting an interconnection between these two variables. This behavior is qualitatively similar to the previous twofold differential measurement of charged pions by the HERMES Collaboration and, recently, by CLAS Collaboration. The largest enhancement was observed at high p T 2 for heavier nuclei, namely, iron and lead, while the smallest enhancement was observed for the lightest nucleus, carbon. This behavior suggests a competition between partonic multiple scattering, which causes enhancement, and hadronic inelastic scattering, which causes suppression. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026