skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adams, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern vector processors support a wide variety of instructions for fixed-point digital signal processing. These instructions support a proliferation of rounding, saturating, and type conversion modes, and are often fused combinations of more primitive operations. While these are common idioms in fixed-point signal processing, it is difficult to use these operations in portable code. It is challenging for programmers to write down portable integer arithmetic in a C-like language that corresponds exactly to one of these instructions, and even more challenging for compilers to recognize when these instructions can be used. Our system, Pitchfork, defines a portable fixed-point intermediate representation, FPIR, that captures common idioms in fixed-point code. FPIR can be used directly by programmers experienced with fixed-point, or Pitchfork can automatically lift from integer operations into FPIR using a term-rewriting system (TRS) composed of verified manual and automatically-synthesized rules. Pitchfork then lowers from FPIR into target-specific fixed-point instructions using a set of target-specific TRSs. We show that this approach improves runtime performance of portably-written fixed-point signal processing code in Halide, across a range of benchmarks, by geomean 1.31× on x86 with AVX2, 1.82× on ARM Neon, and 2.44× on Hexagon HVX compared to a standard LLVM-based compiler flow, while maintaining or improving existing compile times. 
    more » « less
  2. We present a method to automatically synthesize efficient, high-quality demosaicking algorithms, across a range of computational budgets, given a loss function and training data. It performs a multi-objective, discrete-continuous optimization which simultaneously solves for the program structure and parameters that best tradeoff computational cost and image quality. We design the method to exploit domain-specific structure for search efficiency. We apply it to several tasks, including demosaicking both Bayer and Fuji X-Trans color filter patterns, as well as joint demosaicking and super-resolution. In a few days on 8 GPUs, it produces a family of algorithms that significantly improves image quality relative to the prior state-of-the-art across a range of computational budgets from 10 s to 1000 s of operations per pixel (1 dB–3 dB higher quality at the same cost, or 8.5–200× higher throughput at same or better quality). The resulting programs combine features of both classical and deep learning-based demosaicking algorithms into more efficient hybrid combinations, which are bandwidth-efficient and vectorizable by construction. Finally, our method automatically schedules and compiles all generated programs into optimized SIMD code for modern processors. 
    more » « less
  3. This article describes experiences and lessons learned from the Trusted CI project, funded by the US National Science Foundation (NSF) to serve the community as the NSF Cybersecurity Center of Excellence (CCoE). Trusted CI is an effort to address cybersecurity for the open science community through a single organization that provides leadership, training, consulting, and knowledge to that community. The article describes the experiences and lessons learned of Trusted CI regarding both cybersecurity for open science and managing the process of providing centralized services to a broad and diverse community. 
    more » « less