skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Addonizio, Christopher J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Host–guest interactions have been increasingly explored for use in the dynamic physical crosslinking of polymeric precursors to form hydrogel networks. However, the orientation of guest motifs is restricted upon macromolecule conjugation. The implications of such restriction on both the kinetics and thermodynamics of the resulting host–guest supramolecular crosslinks are poorly understood. Herein, guest crosslinking motifs from controlled regioisomers are demonstrated to yield distinct material properties. Moreover, the underlying phenomena point to further unexpected impact of modular guest topology manifest on the molecular scale in both the affinity and dynamics of supramolecular complex formation. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  2. A transient mechanism to achieve gelation in host–guest supramolecular hydrogels is demonstrated by acidification and pH correctionviaindirect control from a biocatalytic enzyme network. 
    more » « less
  3. Hydrogels prepared from supramolecular cross-linking motifs are appealing for use as biomaterials and drug delivery technologies. The inclusion of macromolecules (e.g., protein therapeutics) in these materials is relevant to many of their intended uses. However, the impact of dynamic network cross-linking on macromolecule diffusion must be better understood. Here, hydrogel networks with identical topology but disparate cross-link dynamics are explored. These materials are prepared from cross-linking with host–guest complexes of the cucurbit[7]uril (CB[7]) macrocycle and two guests of different affinity. Rheology confirms differences in bulk material dynamics arising from differences in cross-link thermodynamics. Fluorescence recovery after photobleaching (FRAP) provides insight into macromolecule diffusion as a function of probe molecular weight and hydrogel network dynamics. Together, both rheology and FRAP enable the estimation of the mean network mesh size, which is then related to the solute hydrodynamic diameters to further understand macromolecule diffusion. Interestingly, the thermodynamics of host–guest cross-linking are correlated with a marked deviation from classical diffusion behavior for higher molecular weight probes, yielding solute aggregation in high-affinity networks. These studies offer insights into fundamental macromolecular transport phenomena as they relate to the association dynamics of supramolecular networks. Translation of these materials from in vitro to in vivo is also assessed by bulk release of an encapsulated macromolecule. Contradictory in vitro to in vivo results with inverse relationships in release between the two hydrogels underscores the caution demanded when translating supramolecular biomaterials into application. 
    more » « less
  4. null (Ed.)
  5. Abstract The transient self‐assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out‐of‐equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation. 
    more » « less