skip to main content


Search for: All records

Creators/Authors contains: "Agarwal, Shivani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The dueling bandits problem has received a lot of attention in recent years due to its applications in recommendation systems and information retrieval. However, due to the prevalence of malicious users in these systems, it is becoming increasingly important to design dueling bandit algorithms that are robust to corruptions introduced by these malicious users. In this paper we study dueling bandits in the presence of an adversary that can corrupt some of the feedback received by the learner. We propose an algorithm for this problem that is agnostic to the amount of corruption introduced by the adversary: its regret degrades gracefully with the amount of corruption, and in case of no corruption, it essentially matches the optimal regret bounds achievable in the purely stochastic dueling bandits setting. 
    more » « less
  2. Rank aggregation from pairwise preferences has widespread applications in recommendation systems and information retrieval. Given the enormous economic and societal impact of these applications, and the consequent incentives for malicious players to manipulate ranking outcomes in their favor, an important challenge is to make rank aggregation algorithms robust to adversarial manipulations in data. In this paper, we initiate the study of robustness in rank aggregation under the popular Bradley-Terry-Luce (BTL) model for pairwise comparisons. We consider a setting where pairwise comparisons are initially generated according to a BTL model, but a fraction of these comparisons are corrupted by an adversary prior to being reported to us. We consider a strong contamination model, where an adversary having complete knowledge of the initial truthful data and the underlying true BTL parameters, can subsequently corrupt the truthful data by inserting, deleting, or changing data points. The goal is to estimate the true score/weight of each item under the BTL model, even in the presence of these corruptions. We characterize the extent of adversarial corruption under which the true BTL parameters are uniquely identifiable. We also provide a novel pruning algorithm that provably cleans the data of adversarial corruption under reasonable conditions on data generation and corruption. We corroborate our theory with experiments on both synthetic as well as real data showing that previous algorithms are vulnerable to even small amounts of corruption, whereas our algorithm can clean a reasonably high amount of corruption. 
    more » « less
  3. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less
  4. The problem of rank aggregation from pairwise and multiway comparisons has a wide range of implications, ranging from recommendation systems to sports rankings to social choice. Some of the most popular algorithms for this problem come from the class of spectral ranking algorithms; these include the rank centrality (RC) algorithm for pairwise comparisons, which returns consistent estimates under the Bradley-Terry-Luce (BTL) model for pairwise comparisons (Negahban et al., 2017), and its generalization, the Luce spectral ranking (LSR) algorithm, which returns consistent estimates under the more general multinomial logit (MNL) model for multiway comparisons (Maystre & Grossglauser, 2015). In this paper, we design a provably faster spectral ranking algorithm, which we call accelerated spectral ranking (ASR), that is also consistent under the MNL/BTL models. Our accelerated algorithm is achieved by designing a random walk that has a faster mixing time than the random walks associated with previous algorithms. In addition to a faster algorithm, our results yield improved sample complexity bounds for recovery of the MNL/BTL parameters: to the best of our knowledge, we give the first general sample complexity bounds for recovering the parameters of the MNL model from multiway comparisons under any (connected) comparison graph (and improve significantly over previous bounds for the BTL model for pairwise comparisons). We also give a message-passing interpretation of our algorithm, which suggests a decentralized distributed implementation. Our experiments on several real-world and synthetic datasets confirm that our new ASR algorithm is indeed orders of magnitude faster than existing algorithms. 
    more » « less