skip to main content

Search for: All records

Creators/Authors contains: "Ahn, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Research suggests that engineers generally undergo socialization through two sets of socialization processes when they are newly hired to an organization: (1) initiating proactive behaviors and (2) participating in company-initiated actions, called organizational tactics. This study provides a first-look at socialization in the U.S. aerospace and defense (A&D) industry by examining how newly-hired engineers at A&D organizations initiate proactive behaviors and participate in organizational tactics to adjust to their new jobs and organizations. First, the relationships between two sets of socialization processes and socialization outcomes of new engineers were examined. Second, holistic profiles that best characterize newly hired engineers’ socialization processes, and whether engineers with different types of profiles present varying socialization outcomes were identified. A total of 86 new engineers who had less than two years of working experience in their A&D organizations were included in this study. Multiple regression and Latent Profile Analyses (LPA) were employed. Study findings show that newly-hired engineers in the A&D industry frequently rely on social interactions to adjust to their job position and organization, and they often participate in organizational tactics more than proactive socialization behaviors. Implications of these findings in the context of A&D workplaces and aerospace engineering education settings are discussed. 
    more » « less
  3. Turnover plays a significant role in the productivity of any organization and is especially vital within the initial adjustment period of new hires. Organizations seek to develop strategies to reduce turnover to help solve this issue, but these strategies require knowledge of what influences the retention and satisfaction of the employees. The objective of this research is to identify the factors that managers perceive to affect the retention and the satisfaction of newly hired aerospace engineers so that managers or employers can create strategies to reduce turnover within this group. While research has been conducted on general retention and satisfaction, no research has been specific to the aerospace engineering field and its newly hired employees. These aspects are important because unique factors can arise within specific fields. The current study used qualitative research methods to analyze seven semi-structured interviews with experienced managers of newly hired aerospace engineers. These interviews were analyzed to find key factors that managers consider to affect retention and satisfaction. This research identified six themes for retention factors: local and national economic trends, personal factors unique to each newcomer, the quality of work assigned to the newcomer, the social environment of the workgroup, benefits offered to employees, and the newcomer’s role and how it fits in with the workgroup. This study also identified six themes for satisfaction factors: the quality of work assigned to the newcomer, management styles and actions, general work environment, benefits, fit with a mentor, and expectations for the aerospace industry. 
    more » « less
  4. null (Ed.)
    Solving open-ended complex problems is an essential skill for part of being an engineer and a common activity in the one of the qualities needed in an engineering workplace. In order to help undergraduate engineering students develop such qualities and better prepare them for their future careers, this study is a preliminary effort to explore the problem solving approaches adopted by a student, faculty, and practicing engineer in civil engineering. As part of an ongoing NSF-funded study, this paper qualitatively investigates how three participants solve the following research question: What are the similarities and differences between a student, faculty, and practicing engineer in the approach to solve an ill-structured engineering problem? Verbal protocol analysis was used to answer this research question. Participants were asked to verbalize their response while they worked on the proposed problem. This paper includes a detailed analysis of the observed problem-solving processes of the participants. Our preliminary findings indicate some distinct differences between the student, professor, and practicing engineer in their problem-solving approaches. The student and practicing engineer used their prior knowledge to develop a solution, while the faculty did not make any connection to outside knowledge. It was also observed that the faculty and practicing engineer spent a great deal of time on feasibility and safety issues, whereas the student spent more time detailing the tool that would be used as their solution. Through additional data collection and analysis, we will better understand the similarities and differences between students, professionals, and faculty in terms of how they approach an ill-structured problem. This study will provide insights that will lead to the development of ways to better prepare engineering students to solve complex problems. 
    more » « less
  5. WIP: Assessing the Creative Person, Process and Product in Engineering Education This evidence-based practice paper provides guidance in assessing creativity in engineering education. In the last decade, a number of vision statements on the future of engineering education (e.g. Educating the Engineer of 2020, the ASCE Body of Knowledge) point to the fact that creativity is essential to engineering innovation; it is regarded as an important attribute in the education of engineers in order to meet the most urgent national challenges and to drive economic growth in the new millennium. Yet studies suggest that engineering students’ creative skills are being left underdeveloped or diminish over the course of their studies, or worse, that students who consider themselves to be creative are being driven away from engineering as a chosen field. On the surface, creativity skills are perceived as difficult to utilize in the engineering classroom, primarily due to the didactic nature of science and engineering instruction. Assessing the product of open ended or ill-structured assignments remains a difficult task as well. This study examines available assessments for creativity that are founded in three of the Four Ps of creativity: person, process, product (the fourth P, press, is not considered in this work.) The intent is to identify verified metrics that can be used to quantify creativity with a particular look to whether the metrics are appropriate for creativity, particularly as they pertain to the science and engineering domains. These metrics are examined for applicability to science and engineering, ease of administration and completion, expertise required to score, cost to administer, and time required to administer. Rather than determining the “best” metrics, this examination will provide guidelines for engineering educators and researchers interested in creativity for selecting appropriate metrics to be used in classrooms and research studies based on metric attributes. 
    more » « less
  6. This research paper elaborates on the process used by a team of researchers to create a codebook from interviews of Civil Engineers who included students, professors, and professionals, solving ill-structured problems. The participants solved two ill-structured problems while speaking aloud their thought process. In addition to recording the participant verbalization, the solution to their problems were also collected with the use of a smart pen. Creating a codebook from interviews is a key element of qualitative analysis forming the basis for coding. While individuals can create codebooks for analysis, a team-based approach is advantageous especially when dealing with large amounts of data. A team-based approach involves an iterative process of inter-rater reliability essential to the trustworthiness of the data obtained by coding. In addition to coding the transcripts as a team, which consisted of novice, intermediate, and experts in the engineering education field, the audio and written solution to the problems were also coded. The use of multiple data sources to obtain data, and not just the verbatim transcripts, is lesser studied in engineering education literature and provides opportunities for a more detailed qualitative analysis. Initial codes were created from existing literature, which were refined through an iterative process. This process consisted of coding data, team consensus on coded data, codebook refinement, and recoding data with the refined codes. Results show that coding verbatim transcripts might not provide an accurate representation of the problem-solving processes participants used to solve the ill-structured problem. Benefits, challenges and recommendations regarding the use of multiple sources to obtain data are discussed while considering the amount of time required to conduct such analysis. 
    more » « less