Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 28, 2025
-
Abstract C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.
-
Free, publicly-accessible full text available September 26, 2024
-
Free, publicly-accessible full text available February 14, 2025
-
The rate at which graphene is used in different fields of science and engineering has only increased over the past decade and shows no indication of saturating. At the same time, the most common source of high-quality graphene is through chemical vapor deposition (CVD) growth on copper foils with subsequent wet transfer steps that bring environmental problems and technical challenges due to the compliance of copper foils. To overcome these issues, thin copper films deposited on silicon wafers have been used, but the high temperatures required for graphene growth can cause dewetting of the copper film and consequent challenges in obtaining uniform growth. In this work, we explore sapphire as a substrate for the direct growth of graphene without any metal catalyst at conventional metal CVD temperatures. First, we found that annealing the substrate prior to growth was a crucial step to improve the quality of graphene that can be grown directly on such substrates. The graphene grown on annealed sapphire was uniformly bilayer and had some of the lowest Raman D/G ratios found in the literature. In addition, dry transfer experiments have been performed that have provided a direct measure of the adhesion energy, strength, and range of interactions at the sapphire/graphene interface. The adhesion energy of graphene to sapphire is lower than that of graphene grown on copper, but the strength of the graphene–sapphire interaction is higher. The quality of the several centimeter scale transfer was evaluated using Raman, SEM, and AFM as well as fracture mechanics concepts. Based on the evaluation of the electrical characteristics of the graphene synthesized in this work, this work has implications for several potential electronic applications.more » « lessFree, publicly-accessible full text available October 12, 2024
-
Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal–oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on–off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits.more » « less
-
Abstract The layered semiconductor In2Se3has a low temperature crystalline–crystalline (α → β) phase transformation with distinct electrical properties that make it a promising candidate for phase change memory. Here, using scanning tunneling microscopy, correlative in situ micro‐Raman, and electrical measurements, it is shown that the β phase can persist in bulk crystals at room temperature in non‐oxidative environments. Of particular note, the stability of β phase crystals in ambient conditions under encapsulation of graphene and similar passivation layers, is reported for the first time. The strategy of encapsulation to ensure the persistence of β phase overlaps with efforts to passivate switching materials. It is further demonstrated that degradation from the elevated temperatures required for the phase change is slowed through examination of Raman signatures. These results demonstrate an alternative method of phase manipulation with a new stabilization of β‐In2Se3in ambient conditions potentially extendable to other polymorphic materials, and the importance of passivation in In2Se3memory devices.