skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Akinwande, Deji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Free, publicly-accessible full text available February 7, 2026
  3. Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks. 
    more » « less
  4. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  5. C–H bond activation enables the facile synthesis of new chemicals. While C–H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C–H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C–C coupling mediated by 2D TMDCs to promote C–H activation and carbon dots synthesis. Our results shed light on 2D materials for C–H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials. 
    more » « less
  6. The rate at which graphene is used in different fields of science and engineering has only increased over the past decade and shows no indication of saturating. At the same time, the most common source of high-quality graphene is through chemical vapor deposition (CVD) growth on copper foils with subsequent wet transfer steps that bring environmental problems and technical challenges due to the compliance of copper foils. To overcome these issues, thin copper films deposited on silicon wafers have been used, but the high temperatures required for graphene growth can cause dewetting of the copper film and consequent challenges in obtaining uniform growth. In this work, we explore sapphire as a substrate for the direct growth of graphene without any metal catalyst at conventional metal CVD temperatures. First, we found that annealing the substrate prior to growth was a crucial step to improve the quality of graphene that can be grown directly on such substrates. The graphene grown on annealed sapphire was uniformly bilayer and had some of the lowest Raman D/G ratios found in the literature. In addition, dry transfer experiments have been performed that have provided a direct measure of the adhesion energy, strength, and range of interactions at the sapphire/graphene interface. The adhesion energy of graphene to sapphire is lower than that of graphene grown on copper, but the strength of the graphene–sapphire interaction is higher. The quality of the several centimeter scale transfer was evaluated using Raman, SEM, and AFM as well as fracture mechanics concepts. Based on the evaluation of the electrical characteristics of the graphene synthesized in this work, this work has implications for several potential electronic applications. 
    more » « less