skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amir, Uzma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The hysteresis loop investigations of different size magnetic tunnel junction molecular spintronics devices (MTJMSD) have been done by Monte Carlo simulation (MCS). We employed a continuous MCS algorithm to investigate single-molecule magnet SMM’s spin state’s impact as a function of molecular exchange coupling strength. The applied magnetic fields were ramped at a variety of ranges of increments, unfolding physics behind the magnetization nature of each MTJMSD. The magnetic moment changes with applied magnetic fields exhibit the characteristics of devices being studied. The MTJMSDs were studied for ferromagnetic and antiferromagnetic exchange couplings. The magnetic moment saturation, retentivity, coercivity, and permeability are studied. 
    more » « less
  2. null (Ed.)
    Abstract Harnessing the exotic properties of molecular level nanostructures to produce novel sensors, metamaterials, and futuristic computer devices can be technologically transformative. In addition, connecting the molecular nanostructures to ferromagnetic electrodes bring the unprecedented opportunity of making spin property based molecular devices. We have demonstrated that magnetic tunnel junction based molecular spintronics device (MTJMSD) approach to address numerous technological hurdles that have been inhibiting this field for decades (P. Tyagi, J. Mater. Chem., Vol. 21, 4733). MTJMSD approach is based on producing a capacitor like a testbed where two metal electrodes are separated by an ultrathin insulator and subsequently bridging the molecule nanostructure across the insulator to transform a capacitor into a molecular device. Our prior work showed that MTJMSDs produced extremely intriguing phenomenon such as room temperature current suppression by six orders, spin photovoltaic effect, and evolution of new forms of magnetic metamaterials arising due to the interaction of the magnetic a molecule with two ferromagnetic thin films. However, making robust and reproducible electrical connections with exotic molecules with ferromagnetic electrodes is full of challenges and requires attention to MTJMSD structural stability. This paper focuses on MTJMSD stability by describing the overall fabrication protocol and the associated potential threat to reliability. MTJMSD is based on microfabrication methods such as (a) photolithography for patterning the ferromagnetic electrodes, (b) sputtering of metallic thin films and insulator, and (c) at the end electrochemical process for bridging the molecules between two ferromagnetic films separated by ∼ 2nm insulating gap. For the successful MTJMSD fabrication, the selection of ferromagnetic metal electrodes and thickness was found to be a deterministic factor in designing the photolithography, thin film deposition strategy, and molecular bridging process. We mainly used isotropic NiFe soft magnetic material and anisotropic Cobalt (Co) with significant magnetic hardness. We found Co was susceptible to chemical etching when directly exposed to photoresist developer and aged molecular solution. However, NiFe was very stable against the chemicals we used in the MTJMSD fabrication. As compared to NiFe, the Co films with > 10nm thickness were susceptible to mechanical stress-induced nanoscale deformities. However, cobalt was essential to produce (a) low leakage current before transforming the capacitor from the magnetic tunnel junction into molecular devices and (b) tailoring the magnetic properties of the ferromagnetic electrodes. This paper describes our overall MTJMSD fabrication scheme and process optimization to overcome various challenges to produce stable and reliable MTJMSDs. We also discuss the role of mechanical stresses arising during the sputtering of the ultrathin insulator and how to overcome that challenge by optimizing the insulator growth process. This paper will benefit researchers striving to make nanoscale spintronics devices for solving grand challenges in developing advanced sensors, magnetic metamaterials, and computer devices. 
    more » « less
  3. A device architecture utilizing a single-molecule magnet (SMM) as a device element between two ferromagnetic electrodes may open vast opportunities to create novel molecular spintronics devices. Here, we report a method of connecting an SMM to the ferromagnetic electrodes. We utilized a nickel (Ni)–AlO x –Ni magnetic tunnel junction (MTJ) with the exposed side edges as a test bed. In the present work, we utilized an SMM with a hexanuclear [Mn 6 (μ 3 -O) 2 (H 2 N-sao) 6 (6-atha) 2 (EtOH) 6 ] [H 2 N-saoH = salicylamidoxime, 6-atha = 6-acetylthiohexanoate] complex that is attached to alkane tethers terminated with thiols. These Mn-based molecules were electrochemically bonded between the two Ni electrodes of an exposed-edge tunnel junction, which was produced by the lift-off method. The SMM-treated MTJ exhibited current enhancement and transitory current suppression at room temperature. Monte Carlo simulation was utilized to understand the transport properties of our molecular spintronics device. 
    more » « less