skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Anderson, Kurt E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Decisions to disperse from a habitat stand out among organismal behaviours as pivotal drivers of ecosystem dynamics across scales. Encounters with other species are an important component of adaptive decision-making in dispersal, resulting in widespread behaviours like tracking resources or avoiding consumers in space. Despite this, metacommunity models often treat dispersal as a function of intraspecific density alone. We show, focusing initially on three-species network motifs, that interspecific dispersal rules generally drive a transition in metacommunities from homogeneous steady states to self-organized heterogeneous spatial patterns. However, when ecologically realistic constraints reflecting adaptive behaviours are imposed—prey tracking and predator avoidance—a pronounced homogenizing effect emerges where spatial pattern formation is suppressed. We demonstrate this effect for each motif by computing master stability functions that separate the contributions of local and spatial interactions to pattern formation. We extend this result to species-rich food webs using a random matrix approach, where we find that eventually, webs become large enough to override the homogenizing effect of adaptive dispersal behaviours, leading once again to predominately pattern-forming dynamics. Our results emphasize the critical role of interspecific dispersal rules in shaping spatial patterns across landscapes, highlighting the need to incorporate adaptive behavioural constraints in efforts to link local species interactions and metacommunity structure.

    This article is part of the theme issue ‘Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics’.

     
    more » « less
    Free, publicly-accessible full text available August 12, 2025
  2. Free, publicly-accessible full text available November 12, 2025
  3. Abstract

    Body size affects key biological processes across the tree of life, with particular importance for food web dynamics and stability. Traits influencing movement capabilities depend strongly on body size, yet the effects of allometrically-structured dispersal on food web stability are less well understood than other demographic processes. Here we study the stability properties of spatially-arranged model food webs in which larger bodied species occupy higher trophic positions, while species’ body sizes also determine the rates at which they traverse spatial networks of heterogeneous habitat patches. Our analysis shows an apparent stabilizing effect of positive dispersal rate scaling with body size compared to negative scaling relationships or uniform dispersal. However, as the global coupling strength among patches increases, the benefits of positive body size-dispersal scaling disappear. A permutational analysis shows that breaking allometric dispersal hierarchies while preserving dispersal rate distributions rarely alters qualitative aspects of metacommunity stability. Taken together, these results suggest that the oft-predicted stabilizing effects of large mobile predators may, for some dimensions of ecological stability, be attributed to increased patch coupling per se, and not necessarily coupling by top trophic levels in particular.

     
    more » « less
  4. Abstract

    A changing climate and often unregulated water extractions have exposed over 2 billion people to water stress worldwide. While water managers have explored a portfolio of options to reduce this stress, supply augmentation through reuse of treated municipal wastewater is becoming increasingly attractive. Wastewater treatment plants protect water quality and prevent sewage from contaminating waterways. Increasingly, this resource is utilized for numerous human (e.g., irrigation, drinking water, groundwater recharge) and conservation (e.g., stream and river recharge) needs in water stressed regions. To understand the role treated municipal wastewater plays in impacting conservation objectives we identified the intersection of wastewater treatment plant locations and occurrences of threatened and endangered (T&E) species in California and compared the permitted contribution of effluent to baseflow quantities of the receiving waterbody to assess the degree to which changes in effluent could affect instream waterbodies. We found a positive correlation between the presence of treatment plants and T&E species in California watersheds—a quarter of species have 100% of their range in watersheds with at least one treatment plant. This correlation is greatest for species associated with terraces and riparian habitat, followed by aquatic habitat and aquatic emergent vegetation. One‐third of watersheds in our analysis can receive most of their cumulative watershed baseflow from effluent and are characterized by dense urbanization or agriculture. Our analysis demonstrates that the fates of T&E species and effluent are interconnected in ways important for water policy, suggesting that species conservation goals should be considered when making decisions about effluent reuse.

     
    more » « less
  5. ABSTRACT

    Forecasting plant responses under global change is a critical but challenging endeavour. Despite seemingly idiosyncratic responses of species to global change, greater generalisation of ‘winners’ and ‘losers’ may emerge from considering how species functional traits influence responses and how these responses scale to the community level. Here, we synthesised six long‐term global change experiments combined with locally measured functional traits. We quantified the change in abundance and probability of establishment through time for 70 alpine plant species and then assessed if leaf and stature traits were predictive of species and community responses across nitrogen addition, snow addition and warming treatments. Overall, we found that plants with more resource‐acquisitive trait strategies increased in abundance but each global change factor was related to different functional strategies. Nitrogen addition favoured species with lower leaf nitrogen, snow addition favoured species with cheaply constructed leaves and warming showed few consistent trends. Community‐weighted mean changes in trait values in response to nitrogen addition, snow addition and warming were often different from species‐specific trait effects on abundance and establishment, reflecting in part the responses and traits of dominant species. Together, these results highlight that the effects of traits can differ by scale and response of interest.

     
    more » « less
  6. Abstract

    A major goal of community ecology is understanding the processes responsible for generating biodiversity patterns along spatial and environmental gradients. In stream ecosystems, system‐specific conceptual frameworks have dominated research describing biodiversity change along longitudinal gradients of river networks. However, support for these conceptual frameworks has been mixed, mainly applicable to specific stream ecosystems and biomes, and these frameworks have placed less emphasis on general mechanisms driving biodiversity patterns. Rethinking biodiversity patterns and processes in stream ecosystems with a focus on the overarching mechanisms common across ecosystems will provide a more holistic understanding of why biodiversity patterns vary along river networks. In this study, we apply the theory of ecological communities (TEC) conceptual framework to stream ecosystems to focus explicitly on the core ecological processes structuring communities: dispersal, speciation, niche selection, and ecological drift. Using a unique case study from high‐elevation networks of connected lakes and streams, we sampled stream invertebrate communities in the Sierra Nevada, California, USA to test established stream ecology frameworks and compared them with the TEC framework. Local diversity increased and β‐diversity decreased moving downstream from the headwaters, consistent with the river continuum concept and the small but mighty framework of mountain stream biodiversity. Local diversity was also structured by distance below upstream lakes, where diversity increased with distance below upstream lakes, in support of the serial discontinuity concept. Despite some support for the biodiversity patterns predicted from the stream ecology frameworks, no single framework was fully supported, suggesting “context dependence.” By framing our results under the TEC, we found that species diversity was structured by niche selection, where local diversity was highest in environmentally favorable sites. Local diversity was also highest in sites with small community sizes, countering the predicted effects of ecological drift. Moreover, higher β‐diversity in the headwaters was influenced by dispersal and niche selection, where environmentally harsh and spatially isolated sites exhibit higher community variation. Taken together our results suggest that combining system‐specific ecological frameworks with the TEC provides a powerful approach for inferring the mechanisms driving biodiversity patterns and provides a path toward generalization of biodiversity research across ecosystems.

     
    more » « less