skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Angizi, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the rise of tiny IoT devices powered by machine learning (ML), many researchers have directed their focus toward compressing models to fit on tiny edge devices. Recent works have achieved remarkable success in compressing ML models for object detection and image classification on microcontrollers with small memory, e.g., 512kB SRAM. However, there remain many challenges prohibiting the deployment of ML systems that require high-resolution images. Due to fundamental limits in memory capacity for tiny IoT devices, it may be physically impossible to store large images without external hardware. To this end, we propose a high-resolution image scaling system for edge ML, called HiRISE, which is equipped with selective region-of-interest (ROI) capability leveraging analog in-sensor image scaling. Our methodology not only significantly reduces the peak memory requirements, but also achieves up to 17.7× reduction in data transfer and energy consumption. 
    more » « less
    Free, publicly-accessible full text available November 7, 2025
  2. In this paper, we propose a Flexible processing-in-DRAM framework named FlexiDRAM that supports the efficient implementation of complex bulk bitwise operations. This framework is developed on top of a new reconfigurable in-DRAM accelerator that leverages the analog operation of DRAM sub-arrays and elevates it to implement XOR2-MAJ3 operations between operands stored in the same bit-line. FlexiDRAM first generates an efficient XOR-MAJ representation of the desired logic and then appropriately allocates DRAM rows to the operands to execute any in-DRAM computation. We develop ISA and software support required to compute in-DRAM operation. FlexiDRAM transforms current memory architecture to a massively parallel computational unit and can be leveraged to significantly reduce the latency and energy consumption of complex workloads. Our extensive circuit-to-architecture simulation results show that averaged across two well-known deep learning workloads, FlexiDRAM achieves ∼15× energy-saving and 13× speedup over the GPU outperforming recent processing-in-DRAM platforms. 
    more » « less