skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anisimov, Igor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yin, Shizhuo; Guo, Ruyan (Ed.)
  2. We report a novel four-port optical router that exploits non-linear properties of vanadium dioxide (VO2) phase-change material to achieve asymmetrical power threshold response with power limiting capability. The scope of this study lies within the concept, modeling, and simulation of the device, with practical considerations in mind for future experimental devices. The waveguide structure, designed to operate at the wavelength of 5.0 µm, is composed of a silicon core with air and silicon dioxide forming the cladding layers. Two ring resonators are employed to couple two straight waveguides, thus four individual ports. One of the ring resonators has a 100-nm-thick VO2layer responsible for non-linear behavior of the device. The router achieves 56.5 and 64.5 dB of power limiting at the forward and reverse operating modes, respectively. Total transmission in the inactivated mode is 75%. Bi-stability and latching behavior are demonstrated and discussed. 
    more » « less
  3. The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation involves a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The passive optical limiting is demonstrated by measurements of single 532 nm 6 ns laser pulses and thermo-optical simulations. At fluences below 10mJ/cm2, the multilayer exhibits a flattop passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity. 
    more » « less