skip to main content

Search for: All records

Creators/Authors contains: "Anwar, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 14, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement.more »FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods.« less
  4. Executing complex, burst-parallel, directed acyclic graph (DAG) jobs poses a major challenge for serverless execution frameworks, which will need to rapidly scale and schedule tasks at high throughput, while minimizing data movement across tasks. We demonstrate that, for serverless parallel computations, decentralized scheduling enables scheduling to be distributed across Lambda executors that can schedule tasks in parallel, and brings multiple benefits, including enhanced data locality, reduced network I/Os, automatic resource elasticity, and improved cost effectiveness. We describe the implementation and deployment of our new serverless parallel framework, called Wukong, on AWS Lambda. We show that Wukong achieves near-ideal scalability, executes parallel computation jobs up to 68.17X faster, reduces network I/O by multiple orders of magnitude, and achieves 92.96% tenant-side cost savings compared to numpywren.
  5. Internet-scale web applications are becoming increasingly storage-intensive and rely heavily on in-memory object caching to attain required I/O performance. We argue that the emerging serverless computing paradigm provides a well-suited, cost-effective platform for object caching. We present InfiniCache, a first-of-its-kind in-memory object caching system that is completely built and deployed atop ephemeral serverless functions. InfiniCache exploits and orchestrates serverless functions' memory resources to enable elastic pay-per-use caching. InfiniCache's design combines erasure coding, intelligent billed duration control, and an efficient data backup mechanism to maximize data availability and cost-effectiveness while balancing the risk of losing cached state and performance. We implement InfiniCache on AWS Lambda and show that it: (1) achieves 31 – 96× tenant-side cost savings compared to AWS ElastiCache for a large-object-only production workload, (2) can effectively provide 95.4% data availability for each one hour window, and (3) enables comparative performance seen in a typical in-memory cache.