skip to main content

Search for: All records

Creators/Authors contains: "Anwar, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 24, 2025
  2. Free, publicly-accessible full text available April 22, 2025
  3. Free, publicly-accessible full text available April 22, 2025
  4. Serverless platforms offer on-demand computation and represent a significant shift from previous platforms that typically required resources to be pre-allocated (e.g., virtual machines). As serverless platforms have evolved, they have become suitable for a much wider range of applications than their original use cases. However, storage access remains a pain point that holds serverless back from becoming a completely generic computation platform. Existing storage for serverless typically uses an object interface. Although object APIs are simple to use, they lack the richness, versatility, and performance of file based APIs. Additionally, there is a large body of existing applications that relies on file-based interfaces. The lack of file based storage options prevents these applications from being ported to serverless environments. In this paper, we present F3, a file system that offers features to improve file access in serverless platforms: (1) efficient handling of ephemeral data, by placing ephemeral and non-ephemeral data on storage that exists at a different points along the durability-performance tradeoff continuum, (2) locality-aware data scheduling, and (3) efficient reading while writing. We modified OpenWhisk to support attaching file-based storage and to leverage F3's features using hints. Our prototype evaluation of F3 shows improved performance of up to 1.5--6.5x compared to existing storage systems. 
    more » « less
  5. In Federated Learning (FL), clients independently train local models and share them with a central aggregator to build a global model. Impermissibility to access clients' data and collaborative training make FL appealing for applications with data-privacy concerns, such as medical imaging. However, these FL characteristics pose unprecedented challenges for debugging. When a global model's performance deteriorates, identifying the responsible rounds and clients is a major pain point. Developers resort to trial-and-error debugging with subsets of clients, hoping to increase the global model's accuracy or let future FL rounds retune the model, which are time-consuming and costly. We design a systematic fault localization framework, Fedde-bug,that advances the FL debugging on two novel fronts. First, Feddebug enables interactive debugging of realtime collaborative training in FL by leveraging record and replay techniques to construct a simulation that mirrors live FL. Feddebug'sbreakpoint can help inspect an FL state (round, client, and global model) and move between rounds and clients' models seam-lessly, enabling a fine-grained step-by-step inspection. Second, Feddebug automatically identifies the client(s) responsible for lowering the global model's performance without any testing data and labels-both are essential for existing debugging techniques. Feddebug's strengths come from adapting differential testing in conjunction with neuron activations to determine the client(s) deviating from normal behavior. Feddebug achieves 100% accuracy in finding a single faulty client and 90.3% accuracy in finding multiple faulty clients. Feddebug's interactive de-bugging incurs 1.2% overhead during training, while it localizes a faulty client in only 2.1% of a round's training time. With FedDebug,we bring effective debugging practices to federated learning, improving the quality and productivity of FL application developers. 
    more » « less
  6. Free, publicly-accessible full text available August 1, 2024
  7. Cloud object storage such as AWS S3 is cost-effective and highly elastic but relatively slow, while high-performance cloud storage such as AWS ElastiCache is expensive and provides limited elasticity. We present a new cloud storage service called ServerlessMemory, which stores data using the memory of serverless functions. ServerlessMemory employs a sliding-window-based memory management strategy inspired by the garbage collection mechanisms used in the programming language to effectively segregate hot/cold data and provides fine-grained elasticity, good performance, and a pay-per-access cost model with extremely low cost. We then design and implement InfiniStore, a persistent and elastic cloud storage system, which seamlessly couples the function-based ServerlessMemory layer with a persistent, inexpensive cloud object store layer. InfiniStore enables durability despite function failures using a fast parallel recovery scheme built on the auto-scaling functionality of a FaaS (Function-as-a-Service) platform. We evaluate InfiniStore extensively using both microbenchmarking and two real-world applications. Results show that InfiniStore has more performance benefits for objects larger than 10 MB compared to AWS ElastiCache and Anna, and InfiniStore achieves 26.25% and 97.24% tenant-side cost reduction compared to InfiniCache and ElastiCache, respectively. 
    more » « less