skip to main content


Search for: All records

Creators/Authors contains: "Arcavi, Iair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Transient accretion events onto supermassive black holes (SMBHs), such as tidal disruption events (TDEs), Bowen Fluorescence Flares (BFFs), and active galactic nuclei (AGNs), which are accompanied by sudden increases of activity, offer a new window onto the SMBH population, accretion physics, and stellar dynamics in galaxy centers. However, such transients are rare and finding them in wide-field transient surveys is challenging. Here we present the results of a systematic real-time search for SMBH-related transients in Zwicky Transient Facility (ZTF) public alerts, using various search queries. We examined 345 rising events coincident with a galaxy nucleus, with no history of previous activity, of which 223 were spectroscopically classified. Of those, five (2.2%) were TDEs, one (0.5%) was a BFF, and two (0.9%) were AGN flares. Limiting the search to blue events, the fraction of TDEs nearly doubles to 4.1%, and no TDEs are missed. Limiting the search further to candidate post-starburst galaxies increases the relative number of TDEs to 16.7%, but the absolute numbers in such a search are small. The main contamination source is supernovae (95.1% of classified events), of which the majority (82.2% of supernovae) are of Type Ia. In a comparison set of 39 events with limited photometric history, the AGN contamination increases to ∼30%. Host galaxy offset is not a significant discriminant of TDEs in current ZTF data, but might be useful in higher-resolution data. Our results can be used to quantify the efficiency of various SMBH-related transient search strategies in optical surveys such as ZTF and the Legacy Survey of Space and Time.

     
    more » « less
  2. ABSTRACT

    Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (∼5 × 10−2 M⊙) and a rapidly evolving photospheric radius (with a velocity ∼0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey – the Zwicky Transient Facility Bright Transient Survey – to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g–r, $\dot{g}$, and $\dot{r}$. Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT 2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (≈75 per cent) of the transient candidates with $\vert\dot{g}\vert>0.7$ mag d−1, are cataclysmic variables or active galactic nuclei with radio counterparts.

     
    more » « less
  3. Abstract

    AT 2020mot is a typical UV/optical tidal disruption event (TDE) with no radio or X-ray signatures in a quiescent host. We find ani-band excess and rebrightening along the decline of the light curve which could be due to two consecutive dust echoes from the TDE. We model our observations following van Velzen et al. and find that the near-infrared light curve can be explained by concentric rings of thin dust within ∼0.1 pc of a ∼6 × 106Msupermassive black hole (SMBH), among the smallest scales at which dust has been inferred near SMBHs. We find dust covering factors of orderfc≤ 2%, much lower than found for dusty tori of active galactic nuclei. These results highlight the potential of TDEs for uncovering the environments around black holes when including near-infrared observations in high-cadence transient studies.

     
    more » « less
  4. Abstract

    We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV≈ − 18.2 mag) and plateau (MV≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase,UVcolor shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both theUVcolor and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0Myr−1in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1Myr−1in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1Mof the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.

     
    more » « less
  5. Abstract

    AT 2019azh is a H+He tidal disruption event (TDE) with one of the most extensive ultraviolet and optical data sets available to date. We present our photometric and spectroscopic observations of this event starting several weeks before and out to approximately 2 yr after theg-band's peak brightness and combine them with public photometric data. This extensive data set robustly reveals a change in the light-curve slope and a possible bump in the rising light curve of a TDE for the first time, which may indicate more than one dominant emission mechanism contributing to the pre-peak light curve. Indeed, we find that theMOSFiT-derived parameters of AT 2019azh, which assume reprocessed accretion as the sole source of emission, are not entirely self-consistent. We further confirm the relation seen in previous TDEs whereby the redder emission peaks later than the bluer emission. The post-peak bolometric light curve of AT 2019azh is better described by an exponential decline than by the canonicalt−5/3(and in fact any) power-law decline. We find a possible mid-infrared excess around the peak optical luminosity, but cannot determine its origin. In addition, we provide the earliest measurements of the Hαemission-line evolution and find no significant time delay between the peak of theV-band light curve and that of the Hαluminosity. These results can be used to constrain future models of TDE line formation and emission mechanisms in general. More pre-peak 1–2 days cadence observations of TDEs are required to determine whether the characteristics observed here are common among TDEs. More importantly, detailed emission models are needed to fully exploit such observations for understanding the emission physics of TDEs.

     
    more » « less
  6. Abstract

    The optical-ultraviolet transient AT 2021loi is located at the center of its host galaxy. Its spectral features identify it as a member of the Bowen fluorescence flare (BFF) class. The first member of this class was considered to be related to a tidal disruption event, but enhanced accretion onto an already active supermassive black hole was suggested as an alternative explanation. Having occurred in a previously known unobscured active galactic nucleus, AT 2021loi strengthens the latter interpretation. Its light curve is similar to those of previous BFFs, showing a rebrightening approximately 1 yr after the main peak (which was not explicitly identified but might be the case in all previous BFFs). An emission feature around 4680 Å, seen in the preflare spectrum, strengthens by a factor of ∼2 around the optical peak of the flare and is clearly seen as a double-peaked feature then, suggesting a blend of Niiiλ4640 with Heiiλ4686 as its origin. The appearance of Oiiiλ3133 and possible Niiiλλ4097, 4103 (blended with Hδ) during the flare further support a Bowen fluorescence classification. Here we present ZTF, ATLAS, Keck, Las Cumbres Observatory, NEOWISE-R, Swift AMI, and Very Large Array observations of AT 2021loi, making it one of the best-observed BFFs to date. It thus provides some clarity on the nature of BFFs but also further demonstrates the diversity of nuclear transients.

     
    more » « less
  7. Abstract

    Type Ibn supernovae (SNe) are a rare class of stellar explosions whose progenitor systems are not yet well determined. We present and analyze observations of the Type Ibn SN 2019kbj, and model its light curve in order to constrain its progenitor and explosion parameters. SN 2019kbj shows roughly constant temperature during the first month after peak, indicating a power source (likely circumstellar material interaction) that keeps the continuum emission hot at ∼15,000 K. Indeed, we find that the radioactive decay of56Ni is disfavored as the sole power source of the bolometric light curve. A radioactive decay + circumstellar material (CSM) interaction model, on the other hand, does reproduce the bolometric emission well. The fits prefer a uniform-density CSM shell rather than CSM due to a steady mass-loss wind, similar to what is seen in other Type Ibn SNe. The uniform-density CSM shell model requires ∼0.1Mof56Ni and ∼1Mtotal ejecta mass to reproduce the light curve. SN 2019kbj differs in this manner from another Type Ibn SN with derived physical parameters, SN 2019uo, for which an order of magnitude lower56Ni mass and larger ejecta mass were derived. This points toward a possible diversity in SN Ibn progenitor systems and explosions.

     
    more » « less
  8. Abstract We present the photometry of 16 91T/99aa-like Type Ia Supernovae (SNe Ia) observed by the Las Cumbres Observatory. We also use an additional set of 21 91T/99aa-like SNe Ia and 87 normal SNe Ia from the literature for an analysis of the standardizability of the luminosity of 91T/99aa-like SNe. We find that 91T/99aa-like SNe are 0.2 mag brighter than normal SNe Ia, even when fully corrected by the light-curve shapes and colors. The weighted rms of the 91T/99aa-like SNe (with z CMB > 0.01) Hubble residuals is 0.25 ± 0.03 mag, suggesting that 91T/99aa-like SNe are also excellent relative distance indicators to ±12%. We compare the Hubble residuals with the pseudo-equivalent width (pEW) of Si ii λλ 6355 around the date of maximum brightness. We find that there is a broken linear correlation between those two measurements for our sample including both 91T/99aa-like and normal SNe Ia. As the pEW max (Si ii λλ 6355) increases, the Hubble residual increases when pEW max (Si ii λλ 6355) < 55.6 Å. However, the Hubble residual stays constant beyond this. Given that 91T/99aa-like SNe possess shallower Si ii lines than normal SNe Ia, the linear correlation at pEW max (Si ii λλ 6355) < 55.6 Å can account for the overall discrepancy of Hubble residuals derived from the two subgroups. Such a systematic effect needs to be taken into account when using SNe Ia to measure luminosity distances. 
    more » « less
  9. Abstract We present a high-cadence short term photometric and spectroscopic monitoring campaign of a type Ibn SN 2019wep, which is one of the rare SN Ibn after SNe 2010al and 2019uo to display signatures of flash ionization (He ii , C iii , N iii ). We compare the decline rates and rise time of SN 2019wep with other SNe Ibn and fast transients. The post-peak decline in all bands (0.1 mag day −1 ) are consistent with SNe Ibn but less than the fast transients. On the other hand, the Δ m 15 values are slightly lower than the average values for SNe Ibn but consistent with the fast transients. The rise time is typically shorter than SNe Ibn but longer than fast transients. SN 2019wep lies at the fainter end of SNe Ibn but possesses an average luminosity among the fast transients sample. The peculiar color evolution places it between SNe Ib and the most extreme SNe Ibn. The bolometric light-curve modeling shows resemblance with SN 2019uo with ejecta masses consistent with SNe Ib. SN 2019wep belongs to the P cygni subclass of SNe Ibn and shows faster evolution in line velocities as compared to the emission subclass. The post-maximum spectra show close resemblance with ASASSN-15ed hinting it to be of SN Ib nature. The low He i CSM velocities and residual H α further justifies it and provide evidence of an intermittent progenitor between Wolf-Rayet and LBV stars. 
    more » « less