skip to main content


Search for: All records

Creators/Authors contains: "Ashie, Moses D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Marszalek, R (Ed.)
    Hydrothermal and photoreduction/deposition methods were used to fabricate Ag nanoparticles (NPs) decorated CoMoO4rods. Improvement of charge transfer and transportation of ions by making heterostructure was proved by cyclic voltammetry and electrochemical impedance spectroscopy measurements. Linear sweep voltammetry results revealed a fivefold enhancement of current density by fabricating heterostructure. The lowest Tafel slope (112 mV/dec) for heterostructure compared with CoMoO4(273 mV/dec) suggested the improvement of electrocatalytic performance. The electrochemical CO2reduction reaction was performed on an H-type cell. The CoMoO4electrocatalyst possessed the Faraday efficiencies (FEs) of CO and CH4up to 56.80% and 19.80%, respectively at  − 1.3 V versus RHE. In addition, Ag NPs decorated CoMoO4electrocatalyst showed FEs for CO, CH4, and C2H6were 35.30%, 11.40%, and 44.20%, respectively, at the same potential. It is found that CO2reduction products shifted from CO/CH4to C2H6when the Ag NPs deposited on the CoMoO4electrocatalyst. In addition, it demonstrated excellent electrocatalytic stability after a prolonged 25 h amperometric test at  − 1.3 V versus RHE. It can be attributed to a synergistic effect between the Ag NPs and CoMoO4rods. This study highlights the cooperation between Ag NPs on CoMoO4components and provides new insight into the design of heterostructure as an efficient, stable catalyst towards electrocatalytic reduction of CO2to CO, CH4, and C2H6products.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Metal indium sulfides (ZnIn2S4, NiIn2S4, and CuInS2) were synthesized using a hydrothermal method for electrochemical reduction of CO2in to methane.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. A laboratory-synthesized triblock copolymer poly(ethylene oxide-b-acrylic acid-b-styrene) (PEG-PAA-PS) was used as a template to synthesize hollow BaCO3 nanoparticles (BC-NPs). The triblock copolymer was synthesized using reversible addition–fragmentation chain transfer radical polymerization. The triblock copolymer has a molecular weight of 1.88 × 104 g/mol. Transmission electron microscopy measurements confirm the formation of spherical micelles with a PEG corona, PAA shell, and PS core in an aqueous solution. Furthermore, the dynamic light scattering experiment revealed the electrostatic interaction of Ba2+ ions with an anionic poly(acrylic acid) block of the micelles. The controlled precipitation of BaCO3 around spherical polymeric micelles followed by calcination allows for the synthesis of hollow BC-NPs with cavity diameters of 15 nm and a shell thickness of 5 nm. The encapsulation and release of methotrexate from hollow BC-NPs at pH 7.4 was studied. The cell viability experiments indicate the possibility of BC-NPs maintaining biocompatibility for a prolonged time. 
    more » « less
  4. Iron oxide nanoparticles (IONPs) were synthesized via a block copolymer-assisted hydrothermal method and the phase purity and the crystal structure were investigated by X-ray diffraction. The Rietveld analysis of X-ray diffractometer spectra shows the hexagonal phase symmetry of α-Fe2O3. Further, the vibrational study suggests Raman active modes: 2A1g + 5Eg associated with α-Fe2O3, which corroborates the Rietveld analysis and orbital analysis of 2PFe. The superparamagnetic behavior is confirmed by magnetic measurements performed by the physical properties measurement system. The systematic study of the Congo red (CR) interaction with IONPs using a UV-visible spectrophotometer and a liquid chromatography–tandem mass spectrometry system equipped with a triple quadrupole mass analyzer and an electrospray ionization interface shows effective adsorption. In visible light, the Fe2O3 nanoparticles get easily excited and generate electrons and holes. The photogenerated electrons reduce the Fe3+ ions to Fe2+ ions. The Fe2+/H2O2 oxidizes CR by the Fenton mechanism. The strong adsorption ability of prepared nanoparticles towards dyes attributes the potential candidates for wastewater treatment and other catalytic applications. 
    more » « less