skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ashton, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    It has become increasingly useful to answer questions in gravitational-wave astronomy usingtransdimensionalmodels, where the number of free parameters can be varied depending on the complexity required to fit the data. Given the growing interest in transdimensional inference, we introduce a new package for the Bayesian inference Library (Bilby), calledtBilby. ThetBilbypackage allows users to set up transdimensional inference calculations using the existingBilbyarchitecture with off-the-shelf nested samplers and/or Markov Chain Monte Carlo algorithms. Transdimensional models are particularly helpful when seeking to test theoretically uncertain predictions described by phenomenological models. For example, bursts of gravitational waves can be modeled using a superposition ofNwavelets, whereNis itself a free parameter. Short pulses are modeled with small values ofN, whereas longer, more complicated signals are represented with a large number of wavelets stitched together. Other transdimensional models have been used to describe instrumental noise and the population properties of gravitational-wave sources. We provide a few demonstrations oftBilby, including fitting the gravitational-wave signal GW150914 with a superposition ofNsine-Gaussian wavelets. We outline our plans to further develop thetBilbycode suite for a broader range of transdimensional problems.

     
    more » « less
  2. It has become increasingly useful to answer questions in gravitational-wave astronomy using transdimensional models where the number of free parameters can be varied depending on the complexity required to fit the data. Given the growing interest in transdimensional inference, we introduce a new package for the Bayesian inference Library (Bilby) called tBilby. The tBilby package allows users to set up transdimensional inference calculations using the existing Bilby architecture with off-the-shelf nested samplers and/or Markov Chain Monte Carlo algorithms. Transdimensional models are particularly helpful when we seek to test theoretically uncertain predictions described by phenomenological models. For example, bursts of gravitational waves can be modelled using a superposition of N wavelets where N is itself a free parameter. Short pulses are modelled with small values of N whereas longer, more complicated signals are represented with a large number of wavelets stitched together. Other transdimensional models have found use describing instrumental noise and the population properties of gravitational-wave sources. We provide a few demonstrations of tBilby, including fitting the gravitational-wave signal GW150914 with a superposition of N sine-Gaussian wavelets. We outline our plans to further develop the tbilby code suite for a broader range of transdimensional problems. 
    more » « less
    Free, publicly-accessible full text available April 6, 2025
  3. ABSTRACT

    The global network of interferometric gravitational wave (GW) observatories (LIGO, Virgo, KAGRA) has detected and characterized nearly 100 mergers of binary compact objects. However, many more real GWs are lurking sub-threshold, which need to be sifted from terrestrial-origin noise triggers (known as glitches). Because glitches are not due to astrophysical phenomena, inference on the glitch under the assumption it has an astrophysical source (e.g. binary black hole coalescence) results in source parameters that are inconsistent with what is known about the astrophysical population. In this work, we show how one can extract unbiased population constraints from a catalogue of both real GW events and glitch contaminants by performing Bayesian inference on their source populations simultaneously. In this paper, we assume glitches come from a specific class with a well-characterized effective population (blip glitches). We also calculate posteriors on the probability of each event in the catalogue belonging to the astrophysical or glitch class, and obtain posteriors on the number of astrophysical events in the catalogue, finding it to be consistent with the actual number of events included.

     
    more » « less
  4. ABSTRACT

    Interferometric gravitational-wave observatories have opened a new era in astronomy. The rich data produced by an international network enable detailed analysis of the curved space-time around black holes. With nearly 100 signals observed so far and thousands expected in the next decade, their population properties enable insights into stellar evolution and the expansion of our Universe. However, the detectors are afflicted by transient noise artefacts known as ‘glitches’ which contaminate the signals and bias inferences. Of the 90 signals detected to date, 18 were contaminated by glitches. This feasibility study explores a new approach to transient gravitational-wave data analysis using Gaussian processes, which model the underlying physics of the glitch-generating mechanism rather than the explicit realization of the glitch itself. We demonstrate that if the Gaussian process kernel function can adequately model the glitch morphology, we can recover the parameters of simulated signals. Moreover, we find that the Gaussian processes kernels used in this work are well suited to modelling long-duration glitches which are most challenging for existing glitch-mitigation approaches. Finally, we show how the time-domain nature of our approach enables a new class of time-domain tests of General Relativity, performing a re-analysis of the inspiral-merger-ringdown test on the first observed binary black hole merger. Our investigation demonstrates the feasibility of the Gaussian processes as an alternative to the traditional framework but does not yet establish them as a replacement. Therefore, we conclude with an outlook on the steps needed to realize the full potential of the Gaussian process approach.

     
    more » « less
  5. ABSTRACT

    The upcoming Laser Interferometer Space Antenna (LISA) will detect a large gravitational-wave foreground of Galactic white dwarf binaries. These sources are exceptional for their probable detection at electromagnetic wavelengths, some long before LISA flies. Studies in both gravitational and electromagnetic waves will yield strong constraints on system parameters not achievable through measurements of one messenger alone. In this work, we present a Bayesian inference pipeline and simulation suite in which we study potential constraints on binaries in a variety of configurations. We show how using LISA detections and parameter estimation can significantly improve constraints on system parameters when used as a prior for the electromagnetic analyses. We also provide rules of thumb for how current measurements will benefit from LISA measurements in the future.

     
    more » « less
  6. Standard sirens have been the central paradigm in gravitational-wave cosmology so far. From the gravitational wave signature of compact star binaries, it is possible to measure the luminosity distance of the source directly, and if additional information on the source redshift is provided, a measurement of the cosmological expansion can be performed. This review article discusses several methodologies that have been proposed to use gravitational waves for cosmological studies. Methods that use only gravitational-wave signals and methods that use gravitational waves in conjunction with additional observations such as electromagnetic counterparts and galaxy catalogs will be discussed. The review also discusses the most recent results on gravitational-wave cosmology, starting from the binary neutron star merger GW170817 and its electromagnetic counterpart and finishing with the population of binary black holes, observed with the third Gravitational-wave Transient Catalog GWTC–3. 
    more » « less
  7. Abstract

    The two interferometric LIGO gravitational-wave observatories provide the most sensitive data to date to study the gravitational-wave universe. As part of a global network, they have completed their third observing run in which they observed many tens of signals from merging compact binary systems. It has long been known that a limiting factor in identifying transient gravitational-wave signals is the presence of transient non-Gaussian noise, which reduce the ability of astrophysical searches to detect signals confidently. Significant efforts are taken to identify and mitigate this noise at the source, but its presence persists, leading to the need for software solutions. Taking a set of transient noise artefacts categorised by the GravitySpy software during the O3a observing era, we produce parameterised population models of the noise projected into the space of astrophysical model parameters of merging binary systems. We compare the inferred population properties of transient noise artefacts with observed astrophysical systems from the GWTC2.1 catalogue. We find that while the population of astrophysical systems tend to have near equal masses and moderate spins, transient noise artefacts are typically characterised by extreme mass ratios and large spins. This work provides a new method to calculate the consistency of an observed candidate with a given class of noise artefacts. This approach could be used in assessing the consistency of candidates found by astrophysical searches (i.e. determining if they are consistent with a known glitch class). Furthermore, the approach could be incorporated into astrophysical searches directly, potentially improving the reach of the detectors, though only a detailed study would verify this.

     
    more » « less
  8. ABSTRACT

    The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.

     
    more » « less