skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aurela, Mika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The measured variations in the turbulent static pressure structure function with scale in the roughness sublayer above a subarctic forest are empirically shown to exhibit exponents that are smaller than predicted for the inertial subrange (ISR). Three hypotheses are offered to explain these deviations. The first is based on conventional intermittency correction to the averaged turbulent kinetic energy dissipation rate, the second is based on shearing introducing deviations from locally isotropic state that must be sensed by both velocity and pressure structure functions, and the third is based on large and inertial scale pressure interactions that persist at values of within the resolvable ISR. The third hypothesis is shown to yield superior results, which allows a new formulation for to be derived that accommodates such finite interactions. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  2. Abstract The turbulent static pressure spectrum as a function of longitudinal wavenumber in the roughness sublayer of forested canopies is of interest to a plethora of problems such as pressure transport in the turbulent kinetic energy budget, pressure pumping from snow or forest floor, and coupling between flow within and above canopies. Long term static pressure measurements above a sub‐arctic forested canopy for near‐neutral conditions during the winter and spring were collected and analyzed for three snow cover conditions: trees and ground covered with snow, trees are snow free but the ground is covered with snow, and snow free cover. In all three cases, it is shown that obeys the attached eddy hypothesis at low wavenumbers —with and Kolmogorov scaling in the inertial subrange at higher wavenumbers—with , where is the friction velocity at the canopy top, is the mean turbulent kinetic energy dissipation rate, is the distance from the snow top, and is the boundary layer depth. The implications of these two scaling laws to the normalized root‐mean squared pressure and its newly proposed logarithmic scaling with normalized wall‐normal distance are discussed for snow covered and snow free vegetation conditions. The work here also shows that the in the appears more extensive and robust than its longitudinal velocity counterpart. 
    more » « less
  3. Chen, Jing M (Ed.)
    The Arctic is warming faster than anywhere else on Earth, placing tundra ecosystems at the forefront of global climate change. Plant biomass is a fundamental ecosystem attribute that is sensitive to changes in climate, closely tied to ecological function, and crucial for constraining ecosystem carbon dynamics. However, the amount, functional composition, and distribution of plant biomass are only coarsely quantified across the Arctic. Therefore, we developed the first moderate resolution (30 m) maps of live aboveground plant biomass (g m− 2) and woody plant dominance (%) for the Arctic tundra biome, including the mountainous Oro Arctic. We modeled biomass for the year 2020 using a new synthesis dataset of field biomass harvest measurements, Landsat satellite seasonal synthetic composites, ancillary geospatial data, and machine learning models. Additionally, we quantified pixel-wise uncertainty in biomass predictions using Monte Carlo simulations and validated the models using a robust, spatially blocked and nested cross-validation procedure. Observed plant and woody plant biomass values ranged from 0 to ~6000 g m− 2 (mean ≈350 g m− 2), while predicted values ranged from 0 to ~4000 g m− 2 (mean ≈275 g m− 2), resulting in model validation root-mean-squared-error (RMSE) ≈400 g m− 2 and R2 ≈ 0.6. Our maps not only capture large-scale patterns of plant biomass and woody plant dominance across the Arctic that are linked to climatic variation (e.g., thawing degree days), but also illustrate how fine-scale patterns are shaped by local surface hydrology, topography, and past disturbance. By providing data on plant biomass across Arctic tundra ecosystems at the highest resolution to date, our maps can significantly advance research and inform decision-making on topics ranging from Arctic vegetation monitoring and wildlife conservation to carbon accounting and land surface modeling 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Stably stratified roughness sublayer flows are ubiquitous yet remain difficult to represent in models and to interpret using field experiments. Here, continuous high‐frequency potential temperature profiles from the forest floor up to 6.5 times the canopy height observed with distributed temperature sensing (DTS) are used to link eddy topology to roughness sublayer stability correction functions and coupling between air layers within and above the canopy. The experiments are conducted at two forest stands classified as hydrodynamically sparse and dense. Near‐continuous profiles of eddy sizes (length scales) and effective mixing lengths for heat are derived from the observed profiles using a novel conditional sampling approach. The approach utilizes potential temperature isoline fluctuations from a statically stable background state. The transport of potential temperature by an observed eddy is assumed to be conserved (adiabatic movement) and we assume that irreversible heat exchange between the eddy and the surrounding background occurs along the (vertical) periphery of the eddy. This assumption is analogous to Prandtl's mixing‐length concept, where momentum is transported rapidly vertically and then equilibrated with the local mean velocity gradient. A distinct dependence of the derived length scales on background stratification, height above ground, and canopy characteristics emerges from the observed profiles. Implications of these findings for (1) the failure of Monin–Obukhov similarity in the roughness sublayer and (2) above‐canopy flow coupling to the forest floor are examined. The findings have practical applications in terms of analysing similar DTS data sets with the proposed approach, modelling roughness sublayer flows, and interpreting nocturnal eddy covariance measurements above tall forested canopies. 
    more » « less
  5. Abstract Northern peatlands are a globally significant source of methane (CH4), and emissions are projected to increase due to warming and permafrost loss. Understanding the microbial mechanisms behind patterns in CH4production in peatlands will be key to predicting annual emissions changes, with stable carbon isotopes (δ13C‐CH4) being a powerful tool for characterizing these drivers. Given that δ13C‐CH4is used in top‐down atmospheric inversion models to partition sources, our ability to model CH4production pathways and associated δ13C‐CH4values is critical. We sought to characterize the role of environmental conditions, including hydrologic and vegetation patterns associated with permafrost thaw, on δ13C‐CH4values from high‐latitude peatlands. We measured porewater and emitted CH4stable isotopes, pH, and vegetation composition from five boreal‐Arctic peatlands. Porewater δ13C‐CH4was strongly associated with peatland type, with δ13C enriched values obtained from more minerotrophic fens (−61.2 ± 9.1‰) compared to permafrost‐free bogs (−74.1 ± 9.4‰) and raised permafrost bogs (−81.6 ± 11.5‰). Variation in porewater δ13C‐CH4was best explained by sedge cover, CH4concentration, and the interactive effect of peatland type and pH (r2 = 0.50,p < 0.001). Emitted δ13C‐CH4varied greatly but was positively correlated with porewater δ13C‐CH4. We calculated a mixed atmospheric δ13C‐CH4value for northern peatlands of −65.3 ± 7‰ and show that this value is more sensitive to landscape drying than wetting under permafrost thaw scenarios. Our results suggest northern peatland δ13C‐CH4values are likely to shift in the future which has important implications for source partitioning in atmospheric inversion models. 
    more » « less
  6. Abstract Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we presentThe Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  7. This dataset provides estimates of live, oven-dried aboveground biomass of all plants (tree, shrub, graminoid, forb, bryophyte) and all woody plants (tree, shrub) at 30-meter resolution across the Arctic tundra biome. Estimates of woody plant dominance are also provided as: (woody plant biomass / plant biomass) * 100. Plant biomass and woody plant biomass were estimated for each pixel (grams per square meter [g / m2]) using field harvest data for calibration/validation along with modeled seasonal surface reflectance data derived using Landsat satellite imagery and the Continuous Change Detection and Classification algorithm, and other supplementary predictors related to topography, region (e.g. bioclimate zone, ecosystem type), land cover, and derivative spectral products. Modeling was performed in a two-stage process using random forest models. First, biomass presence/absence was predicted using probability forests. Then, biomass quantity was predicted using regression forests. The model outputs were combined to produce final biomass estimates. Pixel uncertainty was assessed using Monte Carlo iterations. Field and remote sensing data were permuted during each iteration and the median (50th percentile, p500) predictions for each pixel were considered best estimates. In addition, this dataset provides the lower (2.5th percentile, p025) and upper (97.5th percentile, p975) bounds of a 95% uncertainty interval. Estimates of woody plant dominance are not modeled directly, but rather derived from plant biomass and woody plant biomass best estimates. The Pan Arctic domain includes both the Polar Arctic, defined using bioclimate zone data from the Circumpolar Arctic Vegetation Mapping Project (CAVM; Walker et al., 2005), and the Oro Arctic (treeless alpine tundra at high latitudes outside the Polar Arctic), defined using tundra ecoregions from the RESOLVE ecoregions dataset (Dinerstein et al., 2017) and treeline data from CAVM (CAVM Team, 2003). The mapped products focus on Arctic tundra vegetation biomass, but the coarse delineation of this biome meant some forested areas were included within the study domain. Therefore, this dataset also provides a tree mask product that can be used to mask out areas with canopy height ≥ 5 meters. This mask helps reduce, but does not eliminate entirely, areas of dense tree cover within the domain. Users should be cautious of predictions in forested areas as the models used to predict biomass were not well constrained in these areas. This dataset includes 132 files: 128 cloud-optimized GeoTIFFs, 2 tables in comma-separated values (CSV) format, 1 vector polygon in Shapefile format, and one figure in JPEG format. Raster data is provided in the WGS 84 / North Pole LAEA Bering Sea projection (EPSG:3571) at 30 meter (m) resolution. Raster data are tiled with letters representing rows and numbers representing columns, but note that some tiles do not contain unmasked pixels. We included all tiles nonetheless to maintain consistency. Tiling information can be found in the ‘metadata’ directory as a figure (JPEG) or shapefile. 
    more » « less
  8. Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic Plant Aboveground Biomass Synthesis Dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass grams per meter squared (g/m^2) on 2327 sample plots in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic. 
    more » « less
  9. Abstract Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253). 
    more » « less