skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Azadi, Parastoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Alspaugh, J Andrew (Ed.)
    ABSTRACT The development of vaccines for fungal diseases, including cryptococcosis, is an emergent line of research and development. In previous studies, we showed that aCryptococcusmutant lacking theSGL1gene (∆sgl1) accumulates certain glycolipids called steryl glucosides (SGs) on the fungal capsule, promoting an effective immunostimulation that totally protects the host from a secondary cryptococcal infection. However, this protection is lost when the cryptococcal capsule is absent in the∆sgl1background. The cryptococcal capsule is mainly composed of glucuronoxylomannan (GXM), a polysaccharide microfiber consisting of glucuronic acid, xylose, and mannose linked by glycosidic bonds forming specific triads. In this study, we engineered cells to lack each of the GXM components and tested the effect of these deletions on protection under the condition of SG accumulation. We found that glucuronic acid and xylose are required for protection, and their absence abrogates the production of IFNγ and IL-17A by γδ T cells, which are necessary stimulants for the protective phenotype of the∆sgl1. We analyzed the structure of the GXM microfibers and found that although the deletion ofSGL1only slightly affects the size and distribution of these microfibers, it significantly changes the ratio of mannose to other components. In conclusion, this study identifies the structural modifications that the deletion ofSGL1and the consequent accumulation of SGs impart to the GXM structure ofC. neoformans. This provides significant insights into the protective mechanisms mediated by SG accumulation on the capsule, with important implications for the future development of an efficacious cryptococcal vaccine.IMPORTANCECryptococcus neoformansis an encapsulated fungus that causes invasive fungal infections with high morbidity and mortality in susceptible patients. With increasing drug resistance and high toxicity of current antifungal drugs, there is a need for alternative therapeutic strategies, such as a cryptococcal vaccine. In this study, we identify the necessary capsular components and their structural organization required for a cryptococcal vaccine to protect the host against challenge with a virulent strain. These capsular components are glucuronic acid, xylose, and mannose, and they work together with certain glycolipids called steryl glucosides (SGs) to stimulate host immunity. Interestingly, SGs on the capsule may favor the formation of small capsular microfibers organized in specific mannose triads. Thus, the results of this paper are important because they identify a mechanism by which SGs affect the structure of the cryptococcal capsule, with important implications for the future development of a cryptococcal vaccine using capsular components and SGs. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  2. The Neurospora crassa genome has a gene cluster for the synthesis of galactosaminogalactan (GAG). The gene cluster includes the following: (1) UDP-glucose-4-epimerase to convert UDP-glucose and UDP-N-acetylglucosamine to UDP-galactose and UDP-N-acetylgalactosamine (NCU05133), (2) GAG synthase for the synthesis of an acetylated GAG (NCU05132), (3) GAG deacetylase (/NCW-1/NCU05137), (4) GH135-1, a GAG hydrolase with specificity for N-acetylgalactosamine-containing GAG (NCU05135), and (5) GH114-1, a galactosaminidase with specificity for galactosamine-containing GAG (NCU05136). The deacetylase was previously shown to be a major cell wall glycoprotein and given the name of NCW-1 (non-GPI anchored cell wall protein-1). Characterization of the polysaccharides found in the growth medium from the wild type and the GAG synthase mutant demonstrates that there is a major reduction in the levels of polysaccharides containing galactosamine and N-acetylgalactosamine in the mutant growth medium, providing evidence that the synthase is responsible for the production of a GAG. The analysis also indicates that there are other galactose-containing polysaccharides produced by the fungus. Phenotypic characterization of wild-type and mutant isolates showed that deacetylated GAG from the wild type can function as an adhesin to a glass surface and provides the fungal mat with tensile strength, demonstrating that the deacetylated GAG functions as an intercellular adhesive. The acetylated GAG produced by the deacetylase mutant was found to function as an adhesive for chitin, alumina, celite (diatomaceous earth), activated charcoal, and wheat leaf particulates. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Free, publicly-accessible full text available August 1, 2025
  4. Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456). Our results demonstrate that loss of galactofuranose synthesis or its translocation into the lumen of the secretory pathway affects the morphology and growth rate of the vegetative hyphae, the production of conidia (asexual spores), and dramatically affects the sexual stages of the life cycle. In mutants that are unable to make galactofuranose or transport it into the lumen of the Golgi apparatus, ascospore development is aborted soon after fertilization and perithecium maturation is aborted prior to the formation of the neck and ostiole. The Neurospora genome contains three genes encoding possible galactofuranosyltransferases from the GT31 family of glycosyltransferases (gfs-1/NCU05878, gfs-2/NCU07762, and gfs-3/NCU02213) which might be involved in generating galactofuranose-containing oligosaccharide structures. Analysis of triple KO mutants in GT31 glycosyltransferases shows that these mutants have normal morphology, suggesting that these genes do not encode vital galactofuranosyltransferases. 
    more » « less
  5. Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa. 
    more » « less
  6. Abstract The glycosylation on the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, modulates the viral infection by altering conformational dynamics, receptor interaction and host immune responses. Several variants of concern (VOCs) of SARS-CoV-2 have evolved during the pandemic, and crucial mutations on the S protein of the virus have led to increased transmissibility and immune escape. In this study, we compare the site-specific glycosylation and overall glycomic profiles of the wild type Wuhan-Hu-1 strain (WT) S protein and five VOCs of SARS-CoV-2: Alpha, Beta, Gamma, Delta and Omicron. Interestingly, both N- and O-glycosylation sites on the S protein are highly conserved among the spike mutant variants, particularly at the sites on the receptor-binding domain (RBD). The conservation of glycosylation sites is noteworthy, as over 2 million SARS-CoV-2 S protein sequences have been reported with various amino acid mutations. Our detailed profiling of the glycosylation at each of the individual sites of the S protein across the variants revealed intriguing possible association of glycosylation pattern on the variants and their previously reported infectivity. While the sites are conserved, we observed changes in the N- and O-glycosylation profile across the variants. The newly emerged variants, which showed higher resistance to neutralizing antibodies and vaccines, displayed a decrease in the overall abundance of complex-type glycans with both fucosylation and sialylation and an increase in the oligomannose-type glycans across the sites. Among the variants, the glycosylation sites with significant changes in glycan profile were observed at both theN-terminal domain and RBD of S protein, with Omicron showing the highest deviation. The increase in oligomannose-type happens sequentially from Alpha through Delta. Interestingly, Omicron does not contain more oligomannose-type glycans compared to Delta but does contain more compared to the WT and other VOCs. O-glycosylation at the RBD showed lower occupancy in the VOCs in comparison to the WT. Our study on the sites and pattern of glycosylation on the SARS-CoV-2 S proteins across the VOCs may help to understand how the virus evolved to trick the host immune system. Our study also highlights how the SARS-CoV-2 virus has conserved bothN- andO- glycosylation sites on the S protein of the most successful variants even after undergoing extensive mutations, suggesting a correlation between infectivity/ transmissibility and glycosylation. 
    more » « less
  7. Abstract People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in theN-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgGN-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  8. Root-knot nematodes (RKN; Meloidogyne spp.) represent one of the most damaging groups of plant-parasitic nematodes. They secrete effector proteins through a protrusible stylet to manipulate host cells for their benefit. Stylet-secreted effector proteins are produced within specialized secretory esophageal gland cells, one dorsal (DG) and two subventral (SvG), whose activity differ throughout the nematode life cycle. Previous gland transcriptomic profiling studies identified dozens of candidate RKN effectors, but were focused on the juvenile stages of the nematode when the SvGs are most active. We developed a new approach to enrich for the active DGs of RKN M. incognita adult females for RNA and protein extraction. Female heads were manually cut from the body, and a combination of sonication/vortexing was used to dislodge contents inside the heads. DG-enriched fractions were collected by filtering using cell strainers. Comparative transcriptome profiling of pre-parasitic second-stage juveniles, female heads, and DG-enriched samples was conducted using RNA sequencing. Application of an established effector mining pipeline led to the identification of 83 candidate effector genes upregulated in DG-enriched samples of adult females that code for proteins with a predicted signal peptide, but lack transmembrane domains or homology to proteins in the free-living nematode Caenorhabditis elegans. In situ hybridization resulted in the identification of 14 new DG-specific candidate effectors expressed in adult females. Taken together, we have identified novel candidate Meloidogyne effector genes that may have essential roles during later stages of parasitism. 
    more » « less
  9. Abstract Every animal secretes mucus, placing them among the most diverse biological materials. Mucus hydrogels are complex mixtures of water, ions, carbohydrates, and proteins. Uncertainty surrounding their composition and how interactions between components contribute to mucus function complicates efforts to exploit their properties. There is substantial interest in commercializing mucus from the garden snail,Cornu aspersum, for skincare, drug delivery, tissue engineering, and composite materials.C. aspersumsecretes three mucus—one shielding the animal from environmental threats, one adhesive mucus from the pedal surface of the foot, and another pedal mucus that is lubricating. It remains a mystery how compositional differences account for their substantially different properties. Here, we characterize mucus proteins, glycosylation, ion content, and mechanical properties that could be used to provide insight into structure-function relationships through an integrative “mucomics” approach. We identify macromolecular components of these hydrogels, including a previously unreported protein class termed Conserved Anterior Mollusk Proteins (CAMPs). Revealing differences betweenC. aspersummucus shows how considering structure at all levels can inform the design of mucus-inspired materials. 
    more » « less