Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate the electronic shot noise produced by nanowires of β-Ta, an archetypal “bad” metal with resistivity near the Ioffe–Regel localization limit. The Fano factor characterizing the shot noise exhibits a strong dependence on temperature and is suppressed compared to the expectations for quasiparticle diffusion, but hopping transport is ruled out by the analysis of scaling with the nanowire length. These anomalous behaviors closely resemble those of strange metal nanowires, suggesting that β-Ta may host a correlated electron liquid. This material provides an accessible platform for exploring exotic electronic states of matter.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Nitrogen‐containing compounds are valuable synthetic intermediates and targets in nearly every chemical industry. While methods for nitrogen‐carbon and nitrogen‐heteroatom bond formation have primarily relied on nucleophilic nitrogen atom reactivity, molecules containing nitrogen‐halogen bonds allow for electrophilic or radical reactivity modes at the nitrogen center. Despite the growing synthetic utility of nitrogen‐halogen bond‐containing compounds, selective catalytic strategies for their synthesis are largely underexplored. We recently discovered that the vanadium‐dependent haloperoxidase (VHPO) class of enzymes are a suitable biocatalyst platform for nitrogen‐halogen bond formation. Herein, we show that VHPOs perform selective halogenation of a range of substituted benzamidine hydrochlorides to produce the corresponding N’‐halobenzimidamides. This biocatalytic platform is applied to the synthesis of 1,2,4‐oxadiazoles from the corresponding N‐acylbenzamidines in high yield and with excellent chemoselectivity. Finally, the synthetic applicability of this biotechnology is demonstrated in an extension to nitrogen‐nitrogen bond formation and the chemoenzymatic synthesis of the Duchenne muscular dystrophy drug, ataluren.more » « lessFree, publicly-accessible full text available August 25, 2025
-
1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles,1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles,12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g–i+, respectively) have been synthesized and reduced with NaBH4to1gH,1hH, and1iH, and with Na:Hg to1g2and1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts.E(1+/1•) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducingE(1+/1•) values, as well as cathodic shifts inE(12•+/12) andE(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the1Hspecies with PC61BM. Because 2-aryl groups stabilize radicals,1b2and1g2exhibit weaker bonds than1e2and1h2and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a “cleavage-first” pathway, while1e2and1h2react only via “electron-transfer-first”.1h2exhibits the most cathodicE(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers withVIIvia “electron-transfer-first”. Crystal structures show rather long central C–C bonds for1b2(1.5899(11) and 1.6194(8) Å) and1h2(1.6299(13) Å).more » « less