skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bai, Xiaojian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 13, 2025
  2. The phase transitions of a series of Co-doped Heusler alloys, Ni2Mn1−xCoxGa (0⩽x⩽0.2), were investigated experimentally using the magnetization measurements, x-ray diffraction, and calorimetric measurements up to their respective melting points. With increasing Co concentration, the structural transition temperatures, Curie temperatures, and melting points, were observed to increase, while the order–disorder transition temperatures decreased. Temperature-dependent x-ray diffraction experiments revealed two different crystal structures in the low-temperature martensite phase for different Co concentrations. However, above their respective structural transitions, both low-temperature crystal structures transformed into the L21 cubic structure. These findings enabled the construction of a complete magnetic and structural phase diagram for Ni2Mn1−xCoxGa, spanning from cryogenic temperatures to the melting points. The temperature-dependent XRD results revealed the abrupt changes in interatomic Mn–Mn distances, which validates the crucial role of Mn–Mn interatomic distance and the effect of the magnetic coupling competition in the structural stability between the martensite phase and austenite phase. 
    more » « less
  3. Abstract The phase transitions in MnNiGe compounds were explored by manipulating the heat treatment conditions and through hydrostatic pressure application. As the quenching temperature increased, both the first-order martensitic structural transition temperatures and magnetic transition temperatures decreased relative to those in the slowly-cooled samples. When the samples were quenched from 1200 C, the first-order martensitic structural transition temperature lowered by more than 200 K. The structural transitions also shifted to lower temperature with the application of hydrostatic pressure during measurement. Temperature-dependent x-ray diffraction results reveal that the changes of the cell parameters resulting from the structural transitions are nearly identical for all samples regardless of the extensive variation in their structural transition temperatures. In addition, neutron scattering measurements confirm the magnetic structure transition between simple and cycloidal spiral magnetic structures. 
    more » « less
  4. Abstract The search for new elementary particles is one of the most basic pursuits in physics, spanning from subatomic physics to quantum materials. Magnons are the ubiquitous elementary quasiparticle to describe the excitations of fully-ordered magnetic systems. But other possibilities exist, including fractional and multipolar excitations. Here, we demonstrate that strong quantum interactions exist between three flavors of elementary quasiparticles in the uniaxial spin-one magnet FeI2. Using neutron scattering in an applied magnetic field, we observe spontaneous decay between conventional and heavy magnons and the recombination of these quasiparticles into a super-heavy bound-state. Akin to other contemporary problems in quantum materials, the microscopic origin for unusual physics in FeI2is the quasi-flat nature of excitation bands and the presence of Kitaev anisotropic magnetic exchange interactions. 
    more » « less
  5. null (Ed.)