skip to main content

Search for: All records

Creators/Authors contains: "Bailey, Vanessa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The terrestrial carbon cycle is a major source of uncertainty in climate projections. Its dominant fluxes, gross primary productivity (GPP), and respiration (in particular soil respiration, R S ), are typically estimated from independent satellite-driven models and upscaled in situ measurements, respectively. We combine carbon-cycle flux estimates and partitioning coefficients to show that historical estimates of global GPP and R S are irreconcilable. When we estimate GPP based on R S measurements and some assumptions about R S :GPP ratios, we found the resulted global GPP values (bootstrap mean $${149}_{-23}^{+29}$$ 149 − 23 + 29 Pg C yr −1 ) are significantly higher than most GPP estimates reported in the literature ( $${113}_{-18}^{+18}$$ 113 − 18 + 18 Pg C yr −1 ). Similarly, historical GPP estimates imply a soil respiration flux (Rs GPP , bootstrap mean of $${68}_{-8}^{+10}$$ 68 − 8 + 10 Pg C yr −1 ) statistically inconsistent with most published R S values ( $${87}_{-8}^{+9}$$ 87 − 8 + 9 Pg C yr −1 ), although recent, higher, GPP estimates are narrowing this gap. Furthermore, global R S :GPP ratios are inconsistent with spatial averages of this ratio calculated from individual sites as well as CMIP6 model results. This discrepancy has implications for our understanding of carbon turnover times and the terrestrial sensitivity to climate change. Future efforts should reconcile the discrepancies associated with calculations for GPP and Rs to improve estimates of the global carbon budget. 
    more » « less
  2. Abstract

    Topography and canopy cover influence ground temperature in warming permafrost landscapes, yet soil temperature heterogeneity introduced by mesotopographic slope positions, microtopographic differences in vegetation cover, and the subsequent impact of contrasting temperature conditions on soil organic carbon (SOC) dynamics are understudied. Buffering of permafrost‐affected soils against warming air temperatures in boreal forests can reflect surface soil characteristics (e.g., thickness of organic material) as well as the degree and type of canopy cover (e.g., open cover vs. closed cover). Both landscape and soil properties interact to determine meso‐ and microscale heterogeneity of ground warming. We sampled a hillslope catena transect in a discontinuous permafrost zone near Fairbanks, Alaska, to test the small‐scale (1 to 3 m) impacts of slope position and cover type on soil organic matter composition. Mineral active layer samples were collected from backslope, low backslope, and footslope positions at depths spanning 19 to 60 cm. We examined soil mineralogical composition, soil moisture, total carbon and nitrogen content, and organic mat thickness in conjunction with an assessment of SOC composition using Fourier‐transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). Soils in the footslope position had a higher relative contribution of lignin‐like compounds, whereas backslope soils had more aliphatic and condensed aromatic compounds as determined using FT‐ICR‐MS. The effect of open versus closed tree canopy cover varied with the slope position. On the backslope, we found higher oxidation of molecules under open cover than closed cover, indicating an effect of warmer soil temperature on decomposition. Little to no effect of the canopy was observed in soils at the footslope position, which we attributed, in part, to the strong impact of soil moisture content in SOC dynamics in the water‐gathering footslope position. The thin organic mat under open cover on the backslope position may have contributed to differences in soil temperature and thus SOC oxidation under open and closed canopies. Here, the thinner organic mat did not appear to buffer the underlying soil against warm season air temperatures and thus increased SOC decomposition as indicated by the higher oxidation of SOC molecules and a lower contribution of simple molecules under open cover than the closed canopy sites. Our findings suggest that the role of canopy cover in SOC dynamics varies as a function of landscape position and soil properties, namely, organic mat thickness and soil moisture. Condition‐specific heterogeneity of SOC composition under open and closed canopy cover highlights the protective effect of canopy cover for soils on backslope positions.

    more » « less
  3. Abstract Multiwavelength high-resolution imaging of protoplanetary disks has revealed the presence of multiple, varied substructures in their dust and gas components, which might be signposts of young, forming planetary systems. AB Aurigae bears an emblematic (pre)transitional disk showing spiral structures observed in the inner cavity of the disk in both the submillimeter (Atacama Large Millimeter/submillimeter Array (ALMA); 1.3 mm, 12 CO) and near-infrared (Spectro-polarimetric High-contrast Exoplanet Research; 1.5–2.5 μ m) wavelengths, which have been claimed to arise from dynamical interactions with a massive companion. In this work, we present new deep K s (2.16 μ m) and L ′ (3.7 μ m) band images of AB Aurigae obtained with the L/M-band Infrared Camera on the Large Binocular Telescope, aimed for the detection of both planetary companions and extended disk structures. No point source is recovered, in particular at the outer regions of the disk, where a putative candidate ( ρ = 0.″681, PA = 7.°6) had been previously claimed. The nature of a second innermost planet candidate ( ρ = 0.″16, PA = 203.°9) cannot be investigated by the new data. We are able to derive 5 σ detection limits in both magnitude and mass for the system, going from 14 M Jup at 0.″3 (49 au) down to 3–4 M Jup at 0.″6 (98 au) and beyond, based on the ATMO 2020 evolutionary models. We detect the inner spiral structures (<0.″5) resolved in both CO and polarimetric H -band observations. We also recover the ring structure of the system at larger separation (0.″5–0.″7) showing a clear southeast/northwest asymmetry. This structure, observed for the first time at L ′ band, remains interior to the dust cavity seen at ALMA, suggesting an efficient dust trapping mechanism at play in the disk. 
    more » « less
  4. Abstract

    Unraveling the geological processes ongoing at Io’s numerous sites of active volcanism requires high spatial resolution to, for example, measure the areal coverage of lava flows or identify the presence of multiple emitting regions within a single volcanic center. In de Kleer et al. (2017) we described observations with the Large Binocular Telescope during an occultation of Io by Europa at ∼6:17 UT on 2015 March 8 and presented a map of the temperature distribution within Loki Patera derived from these data. Here we present emission maps of three other volcanic centers derived from the same observation: Pillan Patera, Kurdalagon Patera, and the vicinity of Ulgen Patera/PV59/N Lerna Regio. The emission is localized by the light curves and resolved into multiple distinct emitting regions in two of the cases. Both Pillan and Kurdalagon Paterae had undergone eruptions in the months prior to our observations, and the location and intensity of the emission are interpreted in the context of the temporal evolution of these eruptions observed from other facilities. The emission from Kurdalagon Patera is resolved into two distinct emitting regions separated by only a few degrees in latitude that were unresolved by Keck observations from the same month.

    more » « less
  5. Abstract

    Most empirical and modeling research on soil carbon (C) dynamics has focused on those processes that control and promote C stabilization. However, we lack a strong, generalizable understanding of the mechanisms through which soil organic carbon (SOC) is destabilized in soils. Yet a clear understanding of C destabilization processes in soil is needed to quantify the feedbacks of the soil C cycle to the Earth system. Destabilization includes processes that occur along a spectrum through which SOC shifts from a ‘protected’ state to an ‘available’ state to microbial cells where it can be mineralized to gaseous forms or to soluble forms that are then lost from the soil system. These processes fall into three general categories: (1) release from physical occlusion through processes such as tillage, bioturbation, or freeze-thaw and wetting-drying cycles; (2) C desorption from soil solids and colloids; and (3) increased C metabolism. Many processes that stabilize soil C can also destabilize C, and C gain or loss depends on the balance between competing reactions. For example, earthworms may both destabilize C through aggregate destruction, but may also create new aggregates and redistribute C into mineral horizon. Similarly, mycorrhizae and roots form new soil C but may also destabilize old soil C through priming and promoting microbial mining; labile C inputs cause C stabilization through increased carbon use efficiency or may fuel priming. Changes to the soil environment that affect the solubility of minerals or change the relative surfaces charges of minerals can destabilize SOC, including increased pH or in the reductive dissolution of Fe-bearing minerals. By considering these different physical, chemical, and biological controls as processes that contribute to soil C destabilization, we can develop thoughtful new hypotheses about the persistence and vulnerability of C in soils and make more accurate and robust predictions of soil C cycling in a changing environment.

    more » « less
  6. Abstract

    The HR 2562 system is a rare case where a brown dwarf companion resides in a cleared inner hole of a debris disk, offering invaluable opportunities to study the dynamical interaction between a substellar companion and a dusty disk. We present the first ALMA observation of the system as well as the continued Gemini Planet Imager monitoring of the companion’s orbit with six new epochs from 2016 to 2018. We update the orbital fit, and in combination with absolute astrometry from GAIA, place a 3σupper limit of 18.5MJon the companion’s mass. To interpret the ALMA observations, we used radiative transfer modeling to determine the disk properties. We find that the disk is well resolved and nearly edge-on. While the misalignment angle between the disk and the orbit is weakly constrained, due to the short orbital arc available, the data strongly support a (near) coplanar geometry for the system. Furthermore, we find that the models that describe the ALMA data best have inner radii that are close to the companion’s semimajor axis. Including a posteriori knowledge of the system’s SED further narrows the constraints on the disk’s inner radius and places it at a location that is in reasonable agreement with (possibly interior to) predictions from existing dynamical models of disk truncation by an interior substellar companion. HR 2562 has the potential over the next few years to become a new test bed for dynamical interaction between a debris disk and a substellar companion.

    more » « less
  7. Summary

    Relative sea level rise (SLR) increasingly impacts coastal ecosystems through the formation of ghost forests. To predict the future of coastal ecosystems under SLR and changing climate, it is important to understand the physiological mechanisms underlying coastal tree mortality and to integrate this knowledge into dynamic vegetation models.

    We incorporate the physiological effect of salinity and hypoxia in a dynamic vegetation model in the Earth system land model, and used the model to investigate the mechanisms of mortality of conifer forests on the west and east coast sites of USA, where trees experience different form of sea water exposure.

    Simulations suggest similar physiological mechanisms can result in different mortality patterns. At the east coast site that experienced severe increases in seawater exposure, trees loose photosynthetic capacity and roots rapidly, and both storage carbon and hydraulic conductance decrease significantly within a year. Over time, further consumption of storage carbon that leads to carbon starvation dominates mortality. At the west coast site that gradually exposed to seawater through SLR, hydraulic failure dominates mortality because root loss impacts on conductance are greater than the degree of storage carbon depletion.

    Measurements and modeling focused on understanding the physiological mechanisms of mortality is critical to reducing predictive uncertainty.

    more » « less