skip to main content

Search for: All records

Creators/Authors contains: "Balakrishnan, N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The role of the geometric phase effect in chemical reaction dynamics has long been a topic of active experimental and theoretical investigations. The topic has received renewed interest in recent years in cold and ultracold chemistry where it was shown to play a decisive role in state-to-state chemical dynamics. We provide a brief review of these developments focusing on recent studies of O + OH and hydrogen exchange in the H + H 2 and D + HD reactions at cold and ultracold temperatures. Non-adiabatic effects in ultracold chemical dynamics arising from the conical intersection between two electronic potential energy surfaces are also briefly discussed. By taking the hydrogen exchange reaction as an illustrative example it is shown that the inclusion of the geometric phase effect captures the essential features of non-adiabatic dynamics at collision energies below the conical intersection.
  2. A catalyst enhances a reaction pathway without itself being consumed or changed. Recently, there has been growing interest in the concept of “photon catalysis” in which nonresonant photons, which are neither absorbed nor scattered, promote reactions. The driving force behind this effect is the interaction between the strong electric field associated with a pulsed, focused laser and the polarizability of the reacting system. In this study, the effect of near-infrared, nonresonant radiation on the photodissociation of deuterium iodide is demonstrated. We use nanosecond pulses rather than time-resolved spectroscopy to investigate the average effect of the electric field on the branching ratio for forming D + I( 2 P 3/2 ) and D + I( 2 P 1/2 ). Changes in the measured D-atom speeds between field-free and strong-field conditions confirm substantial differences in dissociation dynamics. Both the magnitude and direction of change in the branching ratios are dependent upon the photodissociation wavelength. Experiments and theoretical calculations confirm that the mechanism for photon catalysis under these conditions is dynamic Stark shifting of potential energy surfaces rather than electric-field-induced alignment of reagent molecules.
  3. ABSTRACT Rate coefficients for rotational transitions in HD induced by H2 impact for rotational levels of HD j ≤ 8 and temperatures 10 K ≤ T ≤ 5000 K are reported. The quantum mechanical close-coupling (CC) method and the coupled-states (CS) decoupling approximation are used to obtain the cross-sections employing the most recent highly accurate H2–H2 potential energy surface (PES). Our results are in good agreement with previous calculations for low-lying rotational transitions The cooling efficiency of HD compared with H2 and astrophysical applications are briefly discussed.