Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study a model where particles exist within a board and move single units based on uniform external forces. We investigate the complexity of deciding whether a single particle can be relocated to another position in the board, and whether a board configuration can be transformed into another configuration. We prove that the problems are NP-complete with 1× 1 particles even when only allowed to move in 2 or 3 directions.more » « less
-
Hierarchical Shape Construction and Complexity for Slidable Polyominos under Uniform External ForcesAdvances in technology have given us the ability to create and manipulate robots for numerous applications at the molecular scale. At this size, fabrication tool limitations motivate the use of simple robots. The individual control of these simple objects can be infeasible. We investigate a model of robot motion planning, based on global external signals, known as the tilt model. Given a board and initial placement of polyominoes, the board may be tilted in any of the 4 cardinal directions, causing all slidable polyominoes to move maximally in the specified direction until blocked.We propose a new hierarchy of shapes and design a single configuration that is strongly universal for any w×h bounded shape within this hierarchy (it can be reconfigured to construct any w×h bounded shape in the hierarchy). This class of shapes constitutes the most general set of buildable shapes in the literature, with most previous work consisting of just the first-level of our hierarchy. We accompany this result with a O(n4logn)-time algorithm for deciding if a given hole-free shape is a member of the hierarchy. For our second result, we resolve a long-standing open problem within the field: We show that deciding if a given position may be covered by a tile for a given initial board configuration is PSPACE-complete, even when all movable pieces are 1×1 tiles with no glues. We achieve this result by a reduction from Non-deterministic Constraint Logic for a one-player unbounded game.more » « less
-
We investigate the problem of assembling general shapes and patterns in a model in which particles move based on uniform external forces until they encounter an obstacle. In this model, corresponding particles may bond when adjacent with one another. Succinctly, this model considers a 2D grid of “open” and “blocked” spaces, along with a set of slidable polyominoes placed at open locations on the board. The board may be tilted in any of the 4 cardinal directions, causing all slidable polyominoes to move maximally in the specified direction until blocked. By successively applying a sequence of such tilts, along with allowing different polyominoes to stick when adjacent, tilt sequences provide a method to reconfigure an initial board configuration so as to assemble a collection of previous separate polyominoes into a larger shape. While previous work within this model of assembly has focused on designing a specific board configuration for the assembly of a specific given shape, we propose the problem of designing universal configurations that are capable of constructing a large class of shapes and patterns. For these constructions, we present the notions of weak and strong universality which indicate the presence of “excess” polyominoes after the shape is constructed. In particular, for given integers h, w, we show that there exists a weakly universal configuration with O(hw) 1 × 1 slidable particles that can be reconfigured to build any h × w patterned rectangle. We then expand this result to show that there exists a weakly universal configuration that can build any h × w-bounded size connected shape. Following these results, which require an admittedly relaxed assembly definition, we go on to show the existence of a strongly universal configuration (no excess particles) which can assemble any shape within a previously studied “drop” class, while using quadratically less space than previous results. Finally, we include a study of the complexity of deciding if a particle within a configuration may be relocated to another position, and deciding if a given configuration may be transformed into a second given configuration. We show both problems to be PSPACE-complete even when no particles stick to one another and movable particles are restricted to 1 × 1 tiles and a single 2 × 2 polyomino.more » « less
An official website of the United States government

Full Text Available