skip to main content


Search for: All records

Creators/Authors contains: "Banerjee, Nilanjan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The hypothesis that the central nervous system (CNS) makes use of synergies or movement primitives in achieving simple to complex movements has inspired the investigation of different types of synergies. Kinematic and muscle synergies have been extensively studied in the literature, but only a few studies have compared and combined both types of synergies during the control and coordination of the human hand. In this paper, synergies were extracted first independently (called kinematic and muscle synergies) and then combined through data fusion (called musculoskeletal synergies) from 26 activities of daily living in 22 individuals using principal component analysis (PCA) and independent component analysis (ICA). By a weighted linear combination of musculoskeletal synergies, the recorded kinematics and the recorded muscle activities were reconstructed. The performances of musculoskeletal synergies in reconstructing the movements were compared to the synergies reported previously in the literature by us and others. The results indicate that the musculoskeletal synergies performed better than the synergies extracted without fusion. We attribute this improvement in performance to the musculoskeletal synergies that were generated on the basis of the cross-information between muscle and kinematic activities. Moreover, the synergies extracted using ICA performed better than the synergies extracted using PCA. These musculoskeletal synergies can possibly improve the capabilities of the current methodologies used to control high dimensional prosthetics and exoskeletons. 
    more » « less
  2. Substance use disorder (SUD) is a dangerous epidemic that develops out of recurrent use of alcohol and/or drugs and has the capability to severely damage one’s brain and behaviour. Stress is an established risk factor in SUD’s development of addiction and in reinstating drug seeking. Despite this expanding epidemic and the potential for its grave consequences, there are limited options available for management and treatment, as well as pharmacotherapies and psychosocial treatments. To this end, there is a need for new and improved devices dedicated to the detection, management, and treatment of SUD. In this paper, the negative effects of SUD-related stress were discussed, and based on that, a few significant biomarkers were selected from a set of eight features collected by a chest-worn device, RespiBAN Professional, on fifteen individuals. We used three machine learning classifiers on these optimal biomarkers to detect stress. Based on the accuracies, the best biomarkers to detect stress and those considered as features for classification were determined to be electrodermal activity (EDA), body temperature, and a chest-worn accelerometer. Additionally, the differences between mental stress and physical stress, as well as different administrations of meditation during the study, were identified and analysed. Challenges, implications, and applications were also discussed. In the near future, we aim to replicate the proposed methods in individuals with SUD. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Modeling buildings' heat dynamics is a complex process which depends on various factors including weather, building thermal capacity, insulation preservation, and residents' behavior. Gray-box models offer an explanation of those dynamics, as expressed in a few parameters specific to built environments that can provide compelling insights into the characteristics of building artifacts. In this paper, we present a systematic study of Bayesian approaches to modeling buildings' parameters, and hence their thermal characteristics. We build a Bayesian state-space model that can adapt and incorporate buildings' thermal equations and postulate a generalized solution that can easily adapt prior knowledge regarding the parameters. We then show that a faster approximate approach using Variational Inference for parameter estimation can posit similar parameters' quantification as that of a more time-consuming Markov Chain Monte Carlo (MCMC) approach. We perform extensive evaluations on two datasets to understand the generative process and attest that the Bayesian approach is more interpretable. We further study the effects of prior selection on the model parameters and transfer learning, where we learn parameters from one season and reuse them to fit the model in other seasons. We perform extensive evaluations on controlled and real data traces to enumerate buildings' parameters within a 95% credible interval. 
    more » « less