skip to main content


Search for: All records

Creators/Authors contains: "Bao, Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When dealing with data from distinct locations, machine learning algorithms tend to demonstrate an implicit preference of some locations over the others, which constitutes biases that sabotage the spatial fairness of the algorithm. This unfairness can easily introduce biases in subsequent decision-making given broad adoptions of learning-based solutions in practice. However, locational biases in AI are largely understudied. To mitigate biases over locations, we propose a locational meta-referee (Meta-Ref) to oversee the few-shot meta-training and meta-testing of a deep neural network. Meta-Ref dynamically adjusts the learning rates for training samples of given locations to advocate a fair performance across locations, through an explicit consideration of locational biases and the characteristics of input data. We present a three-phase training framework to learn both a meta-learning-based predictor and an integrated Meta-Ref that governs the fairness of the model. Once trained with a distribution of spatial tasks, Meta-Ref is applied to samples from new spatial tasks (i.e., regions outside the training area) to promote fairness during the fine-tune step. We carried out experiments with two case studies on crop monitoring and transportation safety, which show Meta-Ref can improve locational fairness while keeping the overall prediction quality at a similar level.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. Free, publicly-accessible full text available January 1, 2025
  3. Free, publicly-accessible full text available November 1, 2024
  4. Cloud masking is both a fundamental and a critical task in the vast majority of Earth observation problems across social sectors, including agriculture, energy, water, etc. The sheer volume of satellite imagery to be processed has fast-climbed to a scale (e.g., >10 PBs/year) that is prohibitive for manual processing. Meanwhile, generating reliable cloud masks and image composite is increasingly challenging due to the continued distribution-shifts in the imagery collected by existing sensors and the ever-growing variety of sensors and platforms. Moreover, labeled samples are scarce and geographically limited compared to the needs in real large-scale applications. In related work, traditional remote sensing methods are often physics-based and rely on special spectral signatures from multi- or hyper-spectral bands, which are often not available in data collected by many -- and especially more recent -- high-resolution platforms. Machine learning and deep learning based methods, on the other hand, often require large volumes of up-to-date training data to be reliable and generalizable over space. We propose an autonomous image composition and masking (Auto-CM) framework to learn to solve the fundamental tasks in a label-free manner, by leveraging different dynamics of events in both geographic domains and time-series. Our experiments show that Auto-CM outperforms existing methods on a wide-range of data with different satellite platforms, geographic regions and bands.

     
    more » « less
  5. Spatial data are ubiquitous and have transformed decision-making in many critical domains, including public health, agriculture, transportation, etc. While recent advances in machine learning offer promising ways to harness massive spatial datasets (e.g., satellite imagery), spatial heterogeneity -- a fundamental property of spatial data -- poses a major challenge as data distributions or generative processes often vary over space. Recent studies targeting this difficult problem either require a known space-partitioning as the input, or can only support limited special cases (e.g., binary classification). Moreover, heterogeneity-pattern learned by these methods are locked to the locations of the training samples, and cannot be applied to new locations. We propose a statistically-guided framework to adaptively partition data in space during training using distribution-driven optimization and transform a deep learning model (of user's choice) into a heterogeneity-aware architecture. We also propose a spatial moderator to generalize learned patterns to new test regions. Experiment results on real-world datasets show that the framework can effectively capture footprints of heterogeneity and substantially improve prediction performances.

     
    more » « less
  6. Estimating human mobility responses to the large-scale spreading of the COVID-19 pandemic is crucial, since its significance guides policymakers to give Non-pharmaceutical Interventions, such as closure or reopening of businesses. It is challenging to model due to complex social contexts and limited training data. Recently, we proposed a conditional generative adversarial network (COVID-GAN) to estimate human mobility response under a set of social and policy conditions integrated from multiple data sources. Although COVID-GAN achieves a good average estimation accuracy under real-world conditions, it produces higher errors in certain regions due to the presence of spatial heterogeneity and outliers. To address these issues, in this article, we extend our prior work by introducing a new spatio-temporal deep generative model, namely, COVID-GAN+. COVID-GAN+ deals with the spatial heterogeneity issue by introducing a new spatial feature layer that utilizes the local Moran statistic to model the spatial heterogeneity strength in the data. In addition, we redesign the training objective to learn the estimated mobility changes from historical average levels to mitigate the effects of spatial outliers. We perform comprehensive evaluations using urban mobility data derived from cell phone records and census data. Results show that COVID-GAN+ can better approximate real-world human mobility responses than prior methods, including COVID-GAN. 
    more » « less