Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)The educational data mining community has extensively investigated affect detection in learning platforms, finding associations between affective states and a wide range of learning outcomes. Based on these insights, several studies have used affect detectors to create interventions tailored to respond to when students are bored, confused, or frustrated. However, these detector-based interventions have depended on detecting affect when it occurs and therefore inherently respond to affective states after they have begun. This might not always be soon enough to avoid a negative experience for the student. In this paper, we aim to predict students' affective states in advance. Within our approach, we attempt to determine the maximum prediction window where detector performance remains sufficiently high, documenting the decay in performance when this prediction horizon is increased. Our results indicate that it is possible to predict confusion, frustration, and boredom in advance with performance over chance for prediction horizons of 120, 40, and 50 seconds, respectively. These findings open the door to designing more timely interventions.more » « lessFree, publicly-accessible full text available July 12, 2025
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education in the form of numeric assessment scores. We examine the effectiveness of LLMs in evaluating student responses and scoring the responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide a quantitative score on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-provided scores for middle-school math problems. A similar approach was taken for training the SBERT-Canberra model, while the GPT4 model used a zero-shot learning approach. We evaluate and compare the models' performance in scoring accuracy. This study aims to further the ongoing development of automated assessment and feedback systems and outline potential future directions for leveraging generative LLMs in building automated feedback systems.more » « less
-
Teachers often rely on the use of a range of open-ended problems to assess students' understanding of mathematical concepts. Beyond traditional conceptions of student open-ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features.more » « less
-
Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student open- ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual an- swers. Several computer-based learning systems allow stu- dents to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an ex- isting method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features.more » « less
-
Feedback is a crucial factor in mathematics learning and instruction. Whether expressed as indicators of correctness or textual comments, feedback can help guide students’ understanding of content. Beyond this, however, teacher-written messages and comments can provide motivational and affective benefits for students. The question emerges as to what constitutes effective feedback to promote not only student learning but also motivation and engagement. Teachers may have different perceptions of what constitutes effective feedback utilizing different tones in their writing to communicate their sentiment while assessing student work. This study aims to investigate trends in teacher sentiment and tone when providing feedback to students in a middle school mathematics class context. Toward this, we examine the applicability of state-of-the-art sentiment analysis methods in a mathematics context and explore the use of punctuation marks in teacher feedback messages as a measure of tone.more » « less
-
Solving mathematical problems is cognitively complex, involving strategy formulation, solution development, and the application of learned concepts. However, gaps in students’ knowledge or weakly grasped concepts can lead to errors. Teachers play a crucial role in predicting and addressing these difficulties, which directly influence learning outcomes. However, preemptively identifying misconcep- tions leading to errors can be challenging. This study leverages historical data to assist teachers in recognizing common errors and addressing gaps in knowledge through feedback. We present a longitudinal analysis of incorrect answers from the 2015-2020 aca- demic years on two curricula, Illustrative Math and EngageNY, for grades 6, 7, and 8. We find consistent errors across 5 years despite varying student and teacher populations. Based on these Common Wrong Answers (CWAs), we designed a crowdsourcing platform for teachers to provide Common Wrong Answer Feedback (CWAF). This paper reports on an in vivo randomized study testing the ef- fectiveness of CWAFs in two scenarios: next-problem-correctness within-skill and next-problem-correctness within-assignment, re- gardless of the skill. We find that receiving CWAF leads to a signifi- cant increase in correctness for consecutive problems within-skill. However, the effect was not significant for all consecutive problems within-assignment, irrespective of the associated skill. This paper investigates the potential of scalable approaches in identifying Com- mon Wrong Answers (CWAs) and how the use of crowdsourced CWAFs can enhance student learning through remediation.more » « less
-
Advancements in online learning platforms have revolutionized education in multiple different ways, transforming the learning experiences and instructional practices. The development of natural language processing and machine learning methods have helped understand and process student languages, comprehend their learning state, and build automated supports for teachers. With this, there has been a growing body of research in developing automated methods to assess students’ work both in mathematical and nonmathematical domains. These automated methods address questions of two categories; closed-ended (with limited correct answers) and open-ended (are often subjective and have multiple correct answers), where open-ended questions are mostly used by teachers to learn about their student’s understanding of a particular concept. Manually assessing and providing feedback to these open-ended questions is often arduous and time-consuming for teachers. For this reason, there have been several works to understand student responses to these open-ended questions to automate the assessment and provide constructive feedback to students. In this research, we seek to improve such a prior method for assessment and feedback suggestions for student open-ended works in mathematics. For this, we present an error analysis of the prior method ”SBERT-Canberra” for auto-scoring, explore various factors that contribute to the error of the method, and propose solutions to improve upon the method by addressing these error factors. We further intend to expand this approach by improving feedback suggestions for teachers to give to their students’ open-ended work.more » « less
-
Solving mathematical problems is cognitively complex, involving strategy formulation, solution development, and the application of learned concepts. However, gaps in students' knowledge or weakly grasped concepts can lead to errors. Teachers play a crucial role in predicting and addressing these difficulties, which directly influence learning outcomes. However, preemptively identifying misconceptions leading to errors can be challenging. This study leverages historical data to assist teachers in recognizing common errors and addressing gaps in knowledge through feedback. We present a longitudinal analysis of incorrect answers from the 2015-2020 academic years on two curricula, Illustrative Math and EngageNY, for grades 6, 7, and 8. We find consistent errors across 5 years despite varying student and teacher populations. Based on these Common Wrong Answers (CWAs), we designed a crowdsourcing platform for teachers to provide Common Wrong Answer Feedback (CWAF). This paper reports on an in vivo randomized study testing the effectiveness of CWAFs in two scenarios: next-problem-correctness within-skill and next-problem-correctness within-assignment, regardless of the skill. We find that receiving CWAF leads to a significant increase in correctness for consecutive problems within-skill. However, the effect was not significant for all consecutive problems within-assignment, irrespective of the associated skill. This paper investigates the potential of scalable approaches in identifying Common Wrong Answers (CWAs) and how the use of crowdsourced CWAFs can enhance student learning through remediation.more » « less
-
It is particularly important to identify and address issues of fairness and equity in educational contexts as academic performance can have large impacts on the types of opportunities that are made available to students. While it is always the hope that educators approach student assessment with these issues in mind, there are a number of factors that likely impact how a teacher approaches the scoring of student work. Particularly in cases where the assessment of student work requires subjective judgment, as in the case of open-ended answers and essays, contextual information such as how the student has performed in the past, general perceptions of the student, and even other external factors such as fatigue may all influence how a teacher approaches assessment. While such factors exist, however, it is not always clear how these may introduce bias, nor is it clear whether such bias poses measurable risks to fairness and equity. In this paper, we examine these factors in the context of the assessment of student answers to open response questions from middle school mathematics learners. We observe how several factors such as context and fatigue correlate with teacher-assigned grades and discuss how learning systems may support fair assessment. Keywords: halo effect, grading biases, fairness, subjective assessmentmore » « less
-
Iyer, S (Ed.)It is particularly important to identify and address issues of fairness and equity in educational contexts as academic performance can have large impacts on the types of opportunities that are made available to students. While it is always the hope that educators approach student assessment with these issues in mind, there are a number of factors that likely impact how a teacher approaches the scoring of student work. Particularly in cases where the assessment of student work requires subjective judgment, as in the case of open-ended answers and essays, contextual information such as how the student has performed in the past, general perceptions of the student, and even other external factors such as fatigue may all influence how a teacher approaches assessment. While such factors exist, however, it is not always clear how these may introduce bias, nor is it clear whether such bias poses measurable risks to fairness and equity. In this paper, we examine these factors in the context of the assessment of student answers to open response questions from middle school mathematics learners. We observe how several factors such as context and fatigue correlate with teacher-assigned grades and discuss how learning systems may support fair assessment.more » « less