Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Students’ view of intelligence (i.e., their mindset beliefs) has been found to be related to their self-efficacy and goal orientations as well as to influence their course outcomes. Comparisons of students’ chemistry mindset between different groups found that organic chemistry I students held more of a growth mindset than general chemistry I students at the beginning of a term. Additionally, men tended to hold more growth mindset beliefs than women. Given these differences, structural equation modeling was used to explore the relations between students’ mindset, self-efficacy, and goal orientations, along with their relation to achievement outcomes within a course. An indirect effect of mindset on summative achievement was found to be mediated through performance-avoidance goals, whereas the relation between self-efficacy and summative achievement was mediated through performance-approach, mastery-avoidance, and performance-avoidance goal orientations. While mindset was not found to be directly or indirectly related to formative achievement outcomes, self-efficacy was found to have an indirect effect on formative achievement through mastery-approach and mastery-avoidance goal orientations. Additionally, an interaction between mindset and self-efficacy was found to be related to performance-avoidance goals, as has been suggested in prior studies. These results point to the importance of mindset on achievement outcomes while also considering influences from self-efficacy and goal orientations. Future work is encouraged to investigate how these variables are related when they are measured throughout a term.more » « less
-
Understanding how individual students cognitively engage while participating in small group activities in a General Chemistry class can provide insight into what factors may be influencing their level of engagement. The Interactive-Constructive-Active-Passive (ICAP) framework was used to identify individual students’ level of engagement on items in multiple activities during a General Chemistry course. The effects of timing, group size, and question type on engagement were investigated. Results indicate students’ engagement varied more in the first half of the term, and students demonstrated higher levels of engagement when working in smaller groups or subsets of larger groups when these groups contained students with similar levels of knowledge. Finally, the relation between question type (algorithmic versus explanation) and engagement depended on the activity topic. In an activity on Solutions and Dilutions, there was a significant relation where algorithmic items had higher occurrences of Interactive engagement. The implications of this work regarding teaching and research are discussed.more » « less
-
Chemistry education research has increasingly considered the role of affect when investigating chemistry learning environments over the past decade. Despite its popularity in educational spheres, mindset has been understudied from a chemistry-specific perspective. Mindset encompasses one's beliefs about the ability to change intelligence with effort and has been shown to be a domain-specific construct. For this reason, students’ mindset would be most relevant in chemistry if it were measured as a chemistry-specific construct. To date, no instrument has been developed for use in chemistry learning contexts. Here we present evidence supporting the development process and final product of a mindset instrument designed specifically for undergraduate chemistry students. The Chemistry Mindset Instrument (CheMI) was developed through an iterative design process requiring multiple implementations and revisions. We analyze the psychometric properties of CheMI data from a sample of introductory (general and organic) chemistry students enrolled in lecture courses. We achieved good data-model fit via confirmatory factor analysis and high reliability for the newly developed items, indicating that the instrument functions well with the target population. Significant correlations were observed for chemistry mindset with students’ self-efficacy, mastery goals, and course performance, providing external validity evidence for the construct measurement.more » « less
-
The level of students’ engagement during active learning activities conducted in small groups is important to understanding the effectiveness of these activities. The Interactive–Constructive–Active–Passive (ICAP) framework is a way to determine the cognitive engagement of these groups by analyzing the conversations that occur while student groups work on an activity. This study used qualitative content analysis and ICAP to investigate cognitive engagement during group activities in a General Chemistry course at the question level, a finer grain size than previously studied. The analysis determined the expected engagement based on question design and the observed engagement based on group conversations. Comparisons of expected and observed engagement showed cases of mismatch, and further analysis determined that incorrect model use, unfamiliar scientific vocabulary, and difficulty moving between molecular representations were all contributing themes to the observed mismatches. The implications of these findings with regard to teaching and research are discussed.more » « less
An official website of the United States government

Full Text Available