Changes in leaf temperature are known to drive stomatal responses, because the leaf‐to‐air water vapour gradient (Δ
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract w ) increases with temperature if ambient vapour pressure is held constant, and stomata respond to changes in Δw . However, the direct response of stomata to temperature (DRST; the response when Δw is held constant by adjusting ambient humidity) has been examined far less extensively. Though the meagre available data suggest the response is usually positive, results differ widely and defy broad generalisation. As a result, little is known about the DRST. This review discusses the current state of knowledge about the DRST, including numerous hypothesised biophysical mechanisms, potential implications of the response for plant adaptation, and possible impacts of the DRST on plant‐atmosphere carbon and water exchange in a changing climate. -
Abstract Intra‐specific trait variation (ITV) plays a role in processes at a wide range of scales from organs to ecosystems across climate gradients. Yet, ITV remains rarely quantified for many ecophysiological traits typically assessed for species means, such as pressure volume (PV) curve parameters including osmotic potential at full turgor and modulus of elasticity, which are important in plant water relations. We defined a baseline “reference ITV” (ITVref) as the variation among fully exposed, mature sun leaves of replicate individuals of a given species grown in similar, well‐watered conditions, representing the conservative sampling design commonly used for species‐level ecophysiological traits. We hypothesized that PV parameters would show low ITVrefrelative to other leaf morphological traits, and that their intraspecific relationships would be similar to those previously established across species and proposed to arise from biophysical constraints. In a database of novel and published PV curves and additional leaf structural traits for 50 diverse species, we found low ITVreffor PV parameters relative to other morphological traits, and strong intraspecific relationships among PV traits. Simulation modeling showed that conservative ITVrefenables the use of species‐mean PV parameters for scaling up from spectroscopic measurements of leaf water content to enable sensing of leaf water potential.
-
Abstract Stomata, the microvalves on leaf surfaces, exert major influences across scales, from plant growth and productivity to global carbon and water cycling. Stomatal opening enables leaf photosynthesis, and plant growth and water use, whereas plant survival of drought depends on stomatal closure. Here we report that stomatal function is constrained by a safety-efficiency trade-off, such that species with greater stomatal conductance under high water availability (
g max) show greater sensitivity to closure during leaf dehydration, i.e., a higher leaf water potential at which stomatal conductance is reduced by 50% (Ψgs50). Theg max- Ψgs50trade-off and its mechanistic basis is supported by experiments on leaves of California woody species, and in analyses of previous studies of the responses of diverse flowering plant species around the world. Linking the two fundamental key roles of stomata—the enabling of gas exchange, and the first defense against drought—this trade-off constrains the rates of water use and the drought sensitivity of leaves, with potential impacts on ecosystems. -
Abstract Forest leaf area has enormous leverage on the carbon cycle because it mediates both forest productivity and resilience to climate extremes. Despite widespread evidence that trees are capable of adjusting to changes in environment across both space and time through modifying carbon allocation to leaves, many vegetation models use fixed carbon allocation schemes independent of environment, which introduces large uncertainties into predictions of future forest responses to atmospheric CO2fertilization and anthropogenic climate change. Here, we develop an optimization‐based model, whereby tree carbon allocation to leaves is an emergent property of environment and plant hydraulic traits. Using a combination of meta‐analysis, observational datasets, and model predictions, we find strong evidence that optimal hydraulic–carbon coupling explains observed patterns in leaf allocation across large environmental and CO2concentration gradients. Furthermore, testing the sensitivity of leaf allocation strategy to a diversity in hydraulic and economic spectrum physiological traits, we show that plant hydraulic traits in particular have an enormous impact on the global change response of forest leaf area. Our results provide a rigorous theoretical underpinning for improving carbon cycle predictions through advancing model predictions of leaf area, and underscore that tree‐level carbon allocation to leaves should be derived from first principles using mechanistic plant hydraulic processes in the next generation of vegetation models.