Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset comprises a subsurface characterization of key liquefaction areas in Golbasi, Türkiye, following the February 6, 2023, Kahramanmaraş earthquake sequence. Field testing was conducted from October 30th to November 10th, 2023. The dataset includes Cone Penetration Tests (CPT) as well as borehole sampling and incorporates pore pressure dissipation measurements and standard CPT readings. High-quality subsurface investigations, such as this dataset, are a key component of liquefaction case histories. As such, this data is vital for future analyses of liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations resulting from the Kahramanmaraş earthquake sequence.more » « less
-
This dataset comprises a subsurface characterization of key liquefaction areas in İskenderun, Türkiye, following the February 6, 2023, Kahramanmaraş earthquake sequence. Field testing was conducted from March 18 to March 27, 2024. The dataset includes Cone Penetration Tests (CPT) as well as seismic CPTs (SCPT) and incorporates pore pressure dissipation measurements, shear wave velocities, and standard CPT readings. High-quality subsurface investigations, such as this dataset, are a key component of liquefaction case histories. As such, this data is vital for future analyses of liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations resulting from the Kahramanmaraş earthquake sequence.more » « less
-
This data was gathered during the Geotechnical Extreme Events Reconnaissance (GEER) efforts following the February 6, 2023, Kahramanmaraş earthquake sequence. This dataset is comprised of terrestrial lidar scan point clouds that aim to capture liquefaction-induced building settlement, building-ground interactions, and ground deformations. The objective of the reconnaissance efforts was to capture perishable data on ground failures and liquefaction-induced infrastructure damage due to these earthquakes. Reconnaissance was performed from March 27 to April 1, 2023 in and around İskenderun, Hatay; Gölbaşı, Adıyaman; and Antakya, Hatay. Lidar scans were performed in İskenderun and Gölbaşı at selected liquefaction building sites. The reconnaissance sites were selected as those where there was evidence of liquefaction (e.g., ejecta) and liquefaction-induced building settlements, as well as building-ground interactions, and site access. The processed lidar data are included as .las point cloud files; raw data are included as .fls files. The point cloud data may be viewed and analyzed in point cloud analysis software, including the opensource software CloudCompare. Additional images of the surveyed buildings are included for reference. An explanation of the data types and structure is found in the README.pdf file. These data may be used to investigate earthquake liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations. These data will be of use and interest to engineers and researchers working in the area of liquefaction ground failures and building-ground interactions. Additional information and data from this reconnaissance are available in the GEER reports, which are referenced in the "Related Works" section.more » « less
-
This data was gathered during the Geotechnical Extreme Events Reconnaissance (GEER) efforts following the February 6, 2023, Kahramanmaraş earthquake sequence. This dataset is comprised of terrestrial lidar scan point clouds that aim to capture liquefaction-induced building settlement, building-ground interactions, and ground deformations. The objective of the reconnaissance efforts was to capture perishable data on ground failures and liquefaction-induced infrastructure damage due to these earthquakes. Reconnaissance was performed from March 27 to April 1, 2023 in and around İskenderun, Hatay; Gölbaşı, Adıyaman; and Antakya, Hatay. Lidar scans were performed in İskenderun and Gölbaşı at selected liquefaction building sites. The reconnaissance sites were selected as those where there was evidence of liquefaction (e.g., ejecta) and liquefaction-induced building settlements, as well as building-ground interactions, and site access. The processed lidar data are included as .las point cloud files; raw data are included as .fls files. The point cloud data may be viewed and analyzed in point cloud analysis software, including the opensource software CloudCompare. Additional images of the surveyed buildings are included for reference. An explanation of the data types and structure is found in the README.pdf file. These data may be used to investigate earthquake liquefaction-induced building settlements, building-ground interactions, and liquefaction-induced ground deformations. These data will be of use and interest to engineers and researchers working in the area of liquefaction ground failures and building-ground interactions. Additional information and data from this reconnaissance are available in the GEER reports, which are referenced in the "Related Works" section.more » « less
-
The 2023 Kahramanmaraş earthquake sequence produced extensive liquefaction-induced ground deformations along the infilled shoreline of the port city of İskenderun, Türkiye. Observed liquefaction effects included ground settlement, seaward lateral spreading, and failures along a rubble mound seawall lining the coast. These effects, among other factors, likely contributed to ongoing flooding in İskenderun during moderate storm and high tide events following the earthquakes. The Geotechnical Extreme Events Reconnaissance (GEER) team collected detailed observations and measurements of selected sites affected by liquefaction. This paper presents lateral spreading, ground settlement, and flooding observations in İskenderun, which suggest widespread movements of the coastline relative to the current sea level. The Doğan restaurant case history is described in detail, where earthquake ground deformations and subsequent flooding damaged a dining patio, seawall, and nearby park facilities. Insights from these observations suggest a need to better understand multi-hazard liquefaction and flood consequences to enhance the resilience of coastal cities.more » « less
-
Significant and widespread liquefaction occurred in İskenderun during the 2023 Mw 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared.more » « less
-
Significant and widespread liquefaction occurred in İskenderun during the 2023 moment magnitude (Mw) 7.8 Kahramanmaraş earthquake. Liquefaction effects on buildings were observed in several areas of İskenderun, predominantly in areas of reclaimed land and near historic shorelines. Liquefaction-induced building settlements were particularly concentrated in the Çay District, which is almost entirely reclaimed land. Liquefaction-induced ground and building settlements were either marginal or not apparent in areas away from the historical shorelines. Building settlement and ground deformation were documented at 26 buildings in İskenderun through lidar scans and laser-level hand measurements. Liquefaction-induced building settlements ranged from 0 to 740 mm. Building-ground interactions were evident from hogging ground deformations, including cases where buildings deformed nearby ground and damaged nearby buildings, and sagging buildings. Historic land development affected the spatial extent of observed liquefaction-induced building damage. Representative liquefaction-induced building settlement and building interaction case histories are discussed and key insights are shared.more » « less
-
The 2023 Kahramanmaraş earthquake sequence produced extensive liquefaction-induced ground deformations and ongoing flooding along the shoreline of the Mediterranean port city of İskenderun, Türkiye. This study compiles field observations and analyses from cross-disciplinary perspectives to investigate whether earthquake-induced liquefaction was a significant factor for increasing the flood hazard in İskenderun. Geotechnical reconnaissance observations following the earthquakes included seaward lateral spreading, settlement beneath buildings, and failures of coastal infrastructure. Three presented lateral spreading case histories indicate consistent ground deformation patterns with areas of reclaimed land. Persistent scatterer interferometry (PSI) measurements from synthetic aperture radar (SAR) imagery identify a noticeably greater rate of pre- and post-earthquake subsidence within the İskenderun coastal and urban areas relative to the surrounding regions. The PSI measurements also indicate subsidence rates accelerated following the earthquakes and were typically highest near the observed liquefaction manifestations. These evaluations suggest that while the liquefaction of coastal reclaimed fill caused significant ground deformations in the shoreline area, ongoing subsidence of İskenderun and other factors likely also exacerbated the flood hazard. Insights from this work suggest the importance of evaluating multi-hazard liquefaction and flood consequences for enhancing the resilience of coastal cities.more » « less