Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Methods for rapidly inferring the evolutionary history of species or populations with genome-wide data are progressing, but computational constraints still limit our abilities in this area. We developed an alignment-free method to infer genome-wide phylogenies and implemented it in the Python package TopicContml. The method uses probabilistic topic modeling (specifically, Latent Dirichlet Allocation) to extract topic frequencies from k-mers, which are derived from multilocus DNA sequences. These extracted frequencies then serve as an input for the program Contml in the PHYLIP package, which is used to generate a species tree. We evaluated the performance of TopicContml on simulated datasets with gaps and three biological datasets: 1) 14 DNA sequence loci from two Australian bird species distributed across nine populations, 2) 5162 loci from 80 mammal species, and 3) raw, unaligned, nonorthologous PacBio sequences from 12 bird species. We also assessed the uncertainty of the estimated relationships among clades using a bootstrap procedure. Our empirical results and simulated data suggest that our method is efficient and statistically robust.more » « less
-
Yoshida, Ruriko (Ed.)Phylogenetic trees are fundamental for understanding evolutionary history. However, finding maximum likelihood trees is challenging due to the complexity of the likelihood landscape and the size of tree space. Based on the Billera-Holmes-Vogtmann (BHV) distance between trees, we describe a method to generate intermediate trees on the shortest path between two trees, called pathtrees. These pathtrees give a structured way to generate and visualize part of treespace. They allow investigating intermediate regions between trees of interest, exploring locally optimal trees in topological clusters of treespace, and potentially finding trees of high likelihood unexplored by tree search algorithms. We compared our approach against other tree search tools (P aup *, RA x ML, and R ev B ayes ) using the highest likelihood trees and number of new topologies found, and validated the accuracy of the generated treespace. We assess our method using two datasets. The first consists of 23 primate species (CytB, 1141 bp), leading to well-resolved relationships. The second is a dataset of 182 milksnakes (CytB, 1117 bp), containing many similar sequences and complex relationships among individuals. Our method visualizes the treespace using log likelihood as a fitness function. It finds similarly optimal trees as heuristic methods and presents the likelihood landscape at different scales. It found relevant trees that were not found with MCMC methods. The validation measures indicated that our method performed well mapping treespace into lower dimensions. Our method complements heuristic search analyses, and the visualization allows the inspection of likelihood terraces and exploration of treespace areas not visited by heuristic searches.more » « less
-
Abstract The Carpentarian barrier across north-eastern Australia is a major biogeographic barrier and a generator of biodiversity within the Australian Monsoonal Tropics. Here we present a continent-wide analysis of mitochondrial (control region) and autosomal (14 anonymous loci) sequence and indel variation and niche modelling of brown and black-tailed treecreepers (Climacteris picumnus and Climacteris melanurus), a clade with a classic distribution on either side of the Carpentarian barrier. mtDNA control region sequences exhibited reciprocal monophyly and strong differentiation (Fst = 0.91), and revealed a signature of a recent selective sweep in C. picumnus. A variety of tests support an isolation-with-migration model of divergence, albeit with low levels of gene flow across the Carpentarian barrier and a divergence time between species of ~1.7–2.8 Mya. Palaeoecological niche models show that both range size as measured by available habitat and estimated historical population sizes of both species declined in the past ~600 kyr and that the area of interspecific range overlap was never historically large, perhaps decreasing opportunities for extensive gene flow. The relatively long divergence time and low opportunity for gene flow may have facilitated speciation more so than in other co-distributed bird taxa across the Australian Monsoonal Tropics.more » « less
-
Abstract Species interactions drive diverse evolutionary outcomes. Speciation by cascade reinforcement represents one example of how species interactions can contribute to the proliferation of species. This process occurs when the divergence of mating traits in response to selection against interspecific hybridization incidentally leads to reproductive isolation among populations of the same species. Here, we investigated the population genetic outcomes of cascade reinforcement in North American chorus frogs (Hylidae:Pseudacris). Specifically, we estimated the frequency of hybridization among three taxa, assessed genetic structure within the focal species,P.feriarum, and ascertained the directionality of gene flow withinP.feriarumacross replicated contact zones via coalescent modeling. Through field observations and preliminary experimental crosses, we assessed whether hybridization is possible under natural and laboratory conditions. We found that hybridization occurs amongP.feriarumand two conspecifics at a low rate in multiple contact zones, and that gene flow within the former species is unidirectional from allopatry into sympatry with these other species in three of four contact zones studied. We found evidence of substantial genetic structuring withinP.feriarumincluding a divergent western allopatric cluster, a behaviorally‐distinct sympatric South Carolina cluster, and several genetically‐overlapping clusters from the remainder of the distribution. Furthermore, we found sub‐structuring between reinforced and nonreinforced populations in the two most intensely‐sampled contact zones. Our literature review indicated thatP.feriarumhybridizes with at least five heterospecifics at the periphery of its range providing a mechanism for further intraspecific diversification. This work strengthens the evidence for cascade reinforcement in this clade, revealing the geographic and genetic landscape upon which this process can contribute to the proliferation of species.more » « less
-
Schönian, Gabriele (Ed.)Background Human cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis is highly prevalent in the Peruvian jungle, where it affects military forces deployed to fight against drug trafficking and civilian people that migrate from the highland to the lowland jungle for economic activities such as mining, agriculture, construction, and chestnut harvest. We explored the genetic diversity and population structure of 124 L . (V . ) braziliensis isolates collected from the highland (Junín, Cusco, and Ayacucho) and lowland Peruvian jungle (Loreto, Ucayali, and Madre de Dios). All samples were genotyped using Multilocus Microsatellite Typing (MLMT) of ten highly polymorphic markers. Principal findings High polymorphism and genetic diversity were found in Peruvian isolates of L . (V . ) braziliensis . Most markers are not in Hardy-Weinberg equilibrium; this deviation is most likely caused by local inbreeding, as shown by the positive F IS values. Linkage Disequilibrium in subpopulations was not strong, suggesting the reproduction was not strictly clonal. Likewise, for the first time, two genetic clusters of this parasite were determined, distributed in both areas of the Peruvian jungle, which suggested a possible recent colonization event of the highland jungle from the lowland jungle. Conclusions L . (V . ) braziliensis exhibits considerable genetic diversity with two different clusters in the Peruvian jungle. Migration analysis suggested a colonization event between geographical areas of distribution. Although no human migration was observed at the time of sampling, earlier displacement of humans, reservoirs, or vectors could have been responsible for the parasite spread in both regions.more » « less
-
An approach to the coalescent, the fractional coalescent (f-coalescent), is introduced. The derivation is based on the discrete-time Cannings population model in which the variance of the number of offspring depends on the parameter α. This additional parameter α affects the variability of the patterns of the waiting times; values of lead to an increase of short time intervals, but occasionally allow for very long time intervals. When , the f-coalescent and the Kingman’s n-coalescent are equivalent. The distribution of the time to the most recent common ancestor and the probability that n genes descend from m ancestral genes in a time interval of length T for the f-coalescent are derived. The f-coalescent has been implemented in the population genetic model inference software Migrate. Simulation studies suggest that it is possible to accurately estimate α values from data that were generated with known α values and that the f-coalescent can detect potential environmental heterogeneity within a population. Bayes factor comparisons of simulated data with and real data (H1N1 influenza and malaria parasites) showed an improved model fit of the f-coalescent over the n-coalescent. The development of the f-coalescent and its inclusion into the inference program Migratefacilitates testing for deviations from the n-coalescent.more » « less
-
Abstract Divergence time estimation from multilocus genetic data has become common in population genetics and phylogenetics. We present a new Bayesian inference method that treats the divergence time as a random variable. The divergence time is calculated from an assembly of splitting events on individual lineages in a genealogy. The time for such a splitting event is drawn from a hazard function of the truncated normal distribution. This allows easy integration into the standard coalescence framework used in programs such as Migrate. We explore the accuracy of the new inference method with simulated population splittings over a wide range of divergence time values and with a reanalysis of a dataset of 5 populations consisting of 3 present-day populations (Africans, Europeans, Asian) and 2 archaic samples (Altai and Ust’Isthim). Evaluations of simple divergence models without subsequent geneflow show high accuracy, whereas the accuracy of the results of isolation with migration models depends on the magnitude of the immigration rate. High immigration rates lead to a time of the most recent common ancestor of the sample that, looking backward in time, predates the divergence time. Even with many independent loci, accurate estimation of the divergence time with high immigration rates becomes problematic. Our comparison to other software tools reveals that our lineage-switching method, implemented in Migrate, is comparable to IMa2p. The software Migrate can run large numbers of sequence loci (>1,000) on computer clusters in parallel.more » « less
An official website of the United States government
