Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tiny machine learning (TinyML) applications increasingly operate in dynamically changing deployment scenarios, requiring optimization for both accuracy and latency. Existing methods mainly target a single point in the accuracy/latency tradeoff space, which is insufficient as no single static point can be optimal under variable conditions. We draw on a recently proposed weight-shared SuperNet mechanism to enable serving a stream of queries that activates different SubNets within a SuperNet. This creates an opportunity to exploit the inherent temporal locality of different queries that use the same SuperNet. We propose a hardware–software co-design called SUSHI that introduces a novel SubGraph Stationary optimization. SUSHI consists of a novel field-programmable gate array implementation and a software scheduler that controls which SubNets to serve and which SubGraph to cache in real time. SUSHI yields up to a 32% improvement in latency, 0.98% increase in served accuracy, and achieves up to 78.7% off-chip energy saved across several neural network architectures.more » « less
-
Song, Dawn; Carbin, Michael; Chen, T (Ed.)
-
As the number of weight parameters in deep neural networks (DNNs) continues growing, the demand for ultra-efficient DNN accelerators has motivated research on non-traditional architectures with emerging technologies. Resistive Random-Access Memory (ReRAM) crossbar has been utilized to perform insitu matrix-vector multiplication of DNNs. DNN weight pruning techniques have also been applied to ReRAM-based mixed-signal DNN accelerators, focusing on reducing weight storage and accelerating computation. However, the existing works capture very few peripheral circuits features such as Analog to Digital converters (ADCs) during the neural network design. Unfortunately, ADCs have become the main part of power consumption and area cost of current mixed-signal accelerators, and the large overhead of these peripheral circuits is not solved efficiently. To address this problem, we propose a novel weight pruning framework for ReRAM-based mixed-signal DNN accelerators, named TINYADC, which effectively reduces the required bits for ADC resolution and hence the overall area and power consumption of the accelerator without introducing any computational inaccuracy. Compared to state-of-the-art pruning work on the ImageNet dataset, TINYADC achieves 3.5× and 2.9× power and area reduction, respectively. TINYADC framework optimizes the throughput of state-of-the-art architecture design by 29% and 40% in terms of the throughput per unit of millimeter square and watt (GOPs/s×mm 2 and GOPs/w), respectively.more » « less
-
Over the past decade, three-dimensional die stacking technology has been considered for building large-scale in-package memory systems. In particular, in-package DRAM cache has been considered as a promising solution for high bandwidth and large-scale cache architectures. There are, however, significant challenges such as limited energy efficiency, costly tag management, and physical limitations for scalability that need to be effectively addressed before one can adopt in-package caches in the real-world applications. This paper proposes R-Cache, an in-package cache made by 3D die stacking of memristive memory arrays to alleviate the above-mentioned challenges. Our simulation results on a set of memory intensive parallel applications indicate that R-Cache outperforms the state-of-the-art proposals for in-package caches. R-Cache improves performance by 38% and 27% over the state-of-the-art direct mapped and set associative cache architectures, respectively. Moreover, R-Cache results in averages of 40% and 27% energy reductions as compared to the direct mapped and set-associative cache systems.more » « less
An official website of the United States government

Full Text Available