skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CoDG-ReRAM: An Algorithm-Hardware Co-design to Accelerate Semi-Structured GNNs on ReRAM
Award ID(s):
1718481
PAR ID:
10388831
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2022 IEEE 40th International Conference on Computer Design (ICCD)
Page Range / eLocation ID:
280 to 289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph processing recently received intensive interests in light of a wide range of needs to understand relationships. It is well-known for the poor locality and high memory bandwidth requirement. In conventional architectures, they incur a significant amount of data movements and energy consumption which motivates several hardware graph processing accelerators. The current graph processing accelerators rely on memory access optimizations or placing computation logics close to memory. Distinct from all existing approaches, we leverage an emerging memory technology to accelerate graph processing with analog computation. This paper presents GRAPHR, the first ReRAM-based graph processing accelerator. GRAPHR follows the principle of near-data processing and explores the opportunity of performing massive parallel analog operations with low hardware and energy cost. The analog computation is suitable for graph processing because: 1) The algorithms are iterative and could inherently tolerate the imprecision; 2) Both probability calculation (e.g., PageRank and Collaborative Filtering) and typical graph algorithms involving integers (e.g., BFS/SSSP) are resilient to errors. The key insight of GRAPHR is that if a vertex program of a graph algorithm can be expressed in sparse matrix vector multiplication (SpMV), it can be efficiently performed by ReRAM crossbar. We show that this assumption is generally true for a large set of graph algorithms. GRAPHR is a novel accelerator architecture consisting of two components: memory ReRAM and graph engine (GE). The core graph computations are performed in sparse matrix format in GEs (ReRAM crossbars). The vector/matrix-based graph computation is not new, but ReRAM offers the unique opportunity to realize the massive parallelism with unprecedented energy efficiency and low hardware cost. With small subgraphs processed by GEs, the gain of performing parallel operations overshadows the wastes due to sparsity. The experiment results show that GRAPHR achieves a 16.01X (up to 132.67X) speedup and a 33.82X energy saving on geometric mean compared to a CPU baseline system. Compared to GPU, GRAPHR achieves 1.69X to 2.19X speedup and consumes 4.77X to 8.91X less energy. GRAPHR gains a speedup of 1.16X to 4.12X, and is 3.67X to 10.96X more energy efficiency compared to PIM-based architecture. 
    more » « less
  2. Big data computing applications such as deep learning and graph analytic usually incur a large amount of data movements. Deploying such applications on conventional von Neumann architecture that separates the processing units and memory components likely leads to performance bottleneck due to the limited memory bandwidth. A common approach is to develop architecture and memory co-design methodologies to overcome the challenge. Our research follows the same strategy by leveraging resistive memory (ReRAM) to further enhance the performance and energy efficiency. Specifically, we employ the general principles behind processing-in-memory to design efficient ReRAM based accelerators that support both testing and training operations. Related circuit and architecture optimization will be discussed too. 
    more » « less