skip to main content


Search for: All records

Creators/Authors contains: "Beichman, Charles"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$) M dwarf at the bulge distance ($7.6 \pm 1.0$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $\sim 1.2$ and $\sim 0.9 \mathrm{ M}_{\odot }$, respectively, and the orbital period is $70 \pm 10$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses. 
    more » « less
    Free, publicly-accessible full text available August 21, 2025
  2. Abstract

    The stellar companion to the weak-line T Tauri star DI Tau A was first discovered by the lunar occultation technique in 1989 and was subsequently confirmed by a speckle imaging observation in 1991. It has not been detected since, despite being targeted by five different studies that used a variety of methods and spanned more than 20 yr. Here, we report the serendipitous rediscovery of DI Tau B during our Young Exoplanets Spectroscopic Survey (YESS). Using radial velocity data from YESS spanning 17 yr, new adaptive optics observations from Keck II, and a variety of other data from the literature, we derive a preliminary orbital solution for the system that effectively explains the detection and (almost all of the) non-detection history of DI Tau B. We estimate the dynamical masses of both components, finding that the large mass difference (q∼ 0.17) and long orbital period (≳35 yr) make the DI Tau system a noteworthy and valuable addition to studies of stellar evolution and pre-main-sequence models. With a long orbital period and a small flux ratio (f2/f1) between DI Tau A and B, additional measurements are needed for a better comparison between these observational results and pre-main-sequence models. Finally, we report an average surface magnetic field strength (B¯) for DI Tau A, of ∼0.55 kG, which is unusually low in the context of young active stars.

     
    more » « less
  3. Abstract

    We complete the analysis of planetary candidates found by the KMT AnomalyFinder for the 2017 prime fields that cover ∼13 deg2. We report three unambiguous planets: OGLE-2017-BLG-0640, OGLE-2017-BLG-1275, and OGLE-2017-BLG-1237. The first two of these were not previously identified, while the last was not previously published due to technical complications induced by a nearby variable. We further report that a fourth anomalous event, the previously recognized OGLE-2017-BLG-1777, is very likely to be planetary, although its light curve requires unusually complex modeling because the lens and source both have orbiting companions. One of the three unambiguous planets, OGLE-2017-BLG-1275, is the first AnomalyFinder discovery that has a Spitzer microlens parallax measurement,πE≃ 0.045 ± 0.015, implying that this planetary system almost certainly lies in the Galactic bulge. In the order listed, the four planetary events have planet-host mass ratiosqand normalized projected separationssof(logq,s)=(2.31,0.61), (−2.06, 0.63/1.09), (−2.10, 1.04), and (−2.86, 0.72). Combined with previously published events, the 2017 prime fields contain 11 unambiguous planets with well-measuredqand one very likely candidate, of which three are AnomalyFinder discoveries. In addition to these 12, there are three other unambiguous planets with large uncertainties inq.

     
    more » « less
  4. Abstract The observed correlation between outer giant planets and inner super-Earths is emerging as an important constraint on planet formation theories. In this study, we focus on Kepler-167, which is currently the only system known to contain both inner transiting super-Earths and a confirmed outer transiting gas giant companion beyond 1 au. Using long-term radial velocity monitoring, we measure the mass of the gas giant Kepler-167e ( P = 1071 days) to be 1.01 − 0.15 + 0.16 M J , thus confirming it as a Jupiter analog. We refit the Kepler photometry to obtain updated radii for all four planets. Using a planetary structure model, we estimate that Kepler-167e contains 66 ± 19 M ⊕ of solids and is significantly enriched in metals relative to its solar-metallicity host star. We use these new constraints to explore the broader question of how systems like Kepler-167 form in the pebble accretion framework for giant planet core formation. We utilize simple disk evolution models to demonstrate that more massive and metal-rich disks, which are the most favorable sites for giant planet formation, can also deliver enough solids to the inner disk to form systems of super-Earths. We use these same models to constrain the nature of Kepler-167's protoplanetary disk and find that it likely contained ≳300 M ⊕ of dust and was ≳40 au in size. These values overlap with the upper end of the observed dust mass and size distributions of Class 0 and I disks and are also consistent with the observed occurrence rate of Jupiter analogs around Sun-like stars. 
    more » « less
  5. Vernet, Joël R ; Bryant, Julia J ; Motohara, Kentaro (Ed.)
    Free, publicly-accessible full text available July 22, 2025
  6. Temporal soliton mode locking in coherently pumped microcavities is a promising route towards miniaturized frequency comb systems. However, the power efficiency of the resulting microcombs is usually quite low. Soliton generation by pulse pumping provides a way to increase conversion efficiency (so far, as high as 8%). Here, we study conversion efficiency and report a single-soliton conversion efficiency as high as 54% using a scanning laser, as well as a steady-state single-soliton conversion efficiency as high as 34%. We use the Lagrangian approach to develop analytical expressions for efficiency and soliton temporal placement within the pumping pulse, and our measurements reveal features in the tuning dependence of soliton power and efficiency not seen in continuous pumping. Our experimentally confirmed expressions for efficiency will be useful in understanding advantages and limitations of pulse pumped systems.

     
    more » « less
  7. Abstract

    TESS has proven to be a powerful resource for finding planets, including those that orbit the most prevalent stars in our galaxy: M dwarfs. Identification of stellar companions (both bound and unbound) has become a standard component of the transiting planet confirmation process in order to assess the level of light-curve dilution and the possibility of the target being a false positive. Studies of stellar companions have also enabled investigations into stellar multiplicity in planet-hosting systems, which has wide-ranging implications for both exoplanet detection and characterization, as well as for the formation and evolution of planetary systems. Speckle and AO imaging are some of the most efficient and effective tools for revealing close-in stellar companions; we therefore present observations of 58 M-dwarf TOIs obtained using a suite of speckle imagers at the 3.5 m WIYN telescope, the 4.3 m Lowell Discovery Telescope, and the 8.1 m Gemini North and South telescopes. These observations, as well as near-infrared adaptive optics images obtained for a subset (14) of these TOIs, revealed only two close-in stellar companions. Upon surveying the literature, and cross-matching our sample with Gaia, SUPERWIDE, and the catalog from El-Badry et al., we reveal an additional 15 widely separated common proper motion companions. We also evaluate the potential for undetected close-in companions. Taking into consideration the sensitivity of the observations, our findings suggest that the orbital period distribution of stellar companions to planet-hosting M dwarfs is shifted to longer periods compared to the expected distribution for field M dwarfs.

     
    more » « less
  8. Abstract We present medium-resolution ( λ /Δ λ  = 2700), near-infrared spectral standards for field L0–L2, L4, and L7–Y0 dwarfs obtained with the Near-Infrared Echellette Spectrometer on the Keck II 10 m telescope. These standards allow for detailed spectral comparative analysis of cold brown dwarfs discovered through ongoing ground-based projects such as Backyard Worlds: Planet 9, and forthcoming space-based spectral surveys such as the James Webb Space Telescope, SPHEREx, Euclid, and the Nancy Grace Roman Space Telescope. 
    more » « less
  9. Abstract

    We observed HD 19467 B with JWST’s NIRCam in six filters spanning 2.5–4.6μm with the long-wavelength bar coronagraph. The brown dwarf HD 19467 B was initially identified through a long-period trend in the radial velocity of the G3V star HD 19467. HD 19467 B was subsequently detected via coronagraphic imaging and spectroscopy, and characterized as a late-T type brown dwarf with an approximate temperature ∼1000 K. We observed HD 19467 B as a part of the NIRCam GTO science program, demonstrating the first use of the NIRCam Long Wavelength Bar coronagraphic mask. The object was detected in all six filters (contrast levels of 2 × 10−4to 2 × 10−5) at a separation of 1.″6 using angular differential imaging and synthetic reference differential imaging. Due to a guide star failure during the acquisition of a preselected reference star, no reference star data were available for post-processing. However, reference differential imaging was successfully applied using synthetic point-spread functions developed from contemporaneous maps of the telescope’s optical configuration. Additional radial velocity data (from Keck/HIRES) are used to constrain the orbit of HD 19467 B. Photometric data from TESS are used to constrain the properties of the host star, particularly its age. NIRCam photometry, spectra, and photometry from the literature, and improved stellar parameters are used in conjunction with recent spectral and evolutionary substellar models to derive the physical properties of HD 19467 B. Using an age of 9.4 ± 0.9 Gyr inferred from spectroscopy, Gaia astrometry, and TESS asteroseismology, we obtain a model-derived mass of 62 ± 1MJ, which is consistent within 2σwith the dynamically derived mass of8112+14MJ.

     
    more » « less