skip to main content

Search for: All records

Creators/Authors contains: "Bekris, Kostas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Promising results have been achieved recently in category-level manipulation that generalizes across object instances. Nevertheless, it often requires expensive real-world data collection and manual specification of semantic keypoints for each object category and task. Additionally, coarse keypoint predictions and ignoring intermediate action sequences hinder adoption in complex manipulation tasks beyond pick-and-place. This work proposes a novel, category-level manipulation framework that leverages an object-centric, category-level representation and model-free 6 DoF motion tracking. The canonical object representation is learned solely in simulation and then used to parse a category-level, task trajectory from a single demonstration video. The demonstration is reprojected to a target trajectory tailored to a novel object via the canonical representation. During execution, the manipulation horizon is decomposed into longrange, collision-free motion and last-inch manipulation. For the latter part, a category-level behavior cloning (CatBC) method leverages motion tracking to perform closed-loop control. CatBC follows the target trajectory, projected from the demonstration and anchored to a dynamically selected category-level coordinate frame. The frame is automatically selected along the manipulation horizon by a local attention mechanism. This framework allows to teach different manipulation strategies by solely providing a single demonstration, without complicated manual programming. Extensive experiments demonstrate its efficacy in a rangemore »of challenging industrial tasks in highprecision assembly, which involve learning complex, long-horizon policies. The process exhibits robustness against uncertainty due to dynamics as well as generalization across object instances and scene configurations.« less
    Free, publicly-accessible full text available June 29, 2023
  4. Tensegrity robots, composed of rigid rods and flexible cables, are difficult to accurately model and control given the presence of complex dynamics and high number of DoFs. Differentiable physics engines have been recently proposed as a data-driven approach for model identification of such complex robotic systems. These engines are often executed at a high-frequency to achieve accurate simulation. Ground truth trajectories for training differentiable engines, however, are not typically available at such high frequencies due to limitations of real-world sensors. The present work focuses on this frequency mismatch, which impacts the modeling accuracy. We proposed a recurrent structure for a differentiable physics engine of tensegrity robots, which can be trained effectively even with low-frequency trajectories. To train this new recurrent engine in a robust way, this work introduces relative to prior work: (i) a new implicit integration scheme, (ii) a progressive training pipeline, and (iii) a differentiable collision checker. A model of NASA's icosahedron SUPERballBot on MuJoCo is used as the ground truth system to collect training data. Simulated experiments show that once the recurrent differentiable engine has been trained given the low-frequency trajectories from MuJoCo, it is able to match the behavior of MuJoCo's system. The criterion for successmore »is whether a locomotion strategy learned using the differentiable engine can be transferred back to the ground-truth system and result in a similar motion. Notably, the amount of ground truth data needed to train the differentiable engine, such that the policy is transferable to the ground truth system, is 1% of the data needed to train the policy directly on the ground-truth system.« less
    Free, publicly-accessible full text available May 23, 2023
  5. Task-relevant grasping is critical for industrial assembly, where downstream manipulation tasks constrain the set of valid grasps. Learning how to perform this task, however, is challenging, since task-relevant grasp labels are hard to define and annotate. There is also yet no consensus on proper representations for modeling or off-the-shelf tools for performing task-relevant grasps. This work proposes a framework to learn task-relevant grasping for industrial objects without the need of time-consuming real-world data collection or manual annotation. To achieve this, the entire framework is trained solely in simulation, including supervised training with synthetic label generation and self-supervised, hand-object interaction. In the context of this framework, this paper proposes a novel, object-centric canonical representation at the category level, which allows establishing dense correspondence across object instances and transferring task-relevant grasps to novel instances. Extensive experiments on task-relevant grasping of densely-cluttered industrial objects are conducted in both simulation and real-world setups, demonstrating the effectiveness of the proposed framework.
    Free, publicly-accessible full text available May 25, 2023
  6. This work proposes a robotic pipeline for picking and constrained placement of objects without geometric shape priors. Compared to recent efforts developed for similar tasks, where every object was assumed to be novel, the proposed system recognizes previously manipulated objects and performs online model reconstruction and reuse. Over a lifelong manipulation process, the system keeps learning features of objects it has interacted with and updates their reconstructed models. Whenever an instance of a previously manipulated object reappears, the system aims to first recognize it and then register its previously reconstructed model given the current observation. This step greatly reduces object shape uncertainty allowing the system to even reason for parts of objects, which are currently not observable. This also results in better manipulation efficiency as it reduces the need for active perception of the target object during manipulation. To get a reusable reconstructed model, the proposed pipeline adopts: i) TSDF for object representation, and ii) a variant of the standard particle filter algorithm for pose estimation and tracking of the partial object model. Furthermore, an effective way to construct and maintain a dataset of manipulated objects is presented. A sequence of real-world manipulation experiments is performed. They show how futuremore »manipulation tasks become more effective and efficient by reusing reconstructed models of previously manipulated objects, which were generated during their prior manipulation, instead of treating objects as novel every time.« less
    Free, publicly-accessible full text available May 25, 2023
  7. Free, publicly-accessible full text available April 1, 2023
  8. Tracking the 6D pose of objects in video sequences is important for robot manipulation. Most prior efforts, however, often assume that the target object's CAD model, at least at a category-level, is available for offline training or during online template matching. This work proposes BundleTrack, a general framework for 6D pose tracking of novel objects, which does not depend upon 3D models, either at the instance or category-level. It leverages the complementary attributes of recent advances in deep learning for segmentation and robust feature extraction, as well as memory-augmented pose graph optimization for spatiotemporal consistency. This enables long-term, low-drift tracking under various challenging scenarios, including significant occlusions and object motions. Comprehensive experiments given two public benchmarks demonstrate that the proposed approach significantly outperforms state-of-art, category-level 6D tracking or dynamic SLAM methods. When compared against state-of-art methods that rely on an object instance CAD model, comparable performance is achieved, despite the proposed method's reduced information requirements. An efficient implementation in CUDA provides a real-time performance of 10Hz for the entire framework. Code is available at:
  9. Learning policies in simulation is promising for reducing human effort when training robot controllers. This is especially true for soft robots that are more adaptive and safe but also more difficult to accurately model and control. The sim2real gap is the main barrier to successfully transfer policies from simulation to a real robot. System identification can be applied to reduce this gap but traditional identification methods require a lot of manual tuning. Data-driven alternatives can tune dynamical models directly from data but are often data hungry, which also incorporates human effort in collecting data. This work proposes a data-driven, end-to-end differentiable simulator focused on the exciting but challenging domain of tensegrity robots. To the best of the authors’ knowledge, this is the first differentiable physics engine for tensegrity robots that supports cable, contact, and actuation modeling. The aim is to develop a reasonably simplified, data-driven simulation, which can learn approximate dynamics with limited ground truth data. The dynamics must be accurate enough to generate policies that can be transferred back to the ground-truth system. As a first step in this direction, the current work demonstrates sim2sim transfer, where the unknown physical model of MuJoCo acts as a ground truth system.more »Two different tensegrity robots are used for evaluation and learning of locomotion policies, a 6-bar and a 3-bar tensegrity. The results indicate that only 0.25% of ground truth data are needed to train a policy that works on the ground truth system when the differentiable engine is used for training against training the policy directly on the ground truth system.« less
  10. Dynamic tensegrity robots are inspired by tensegrity structures in architecture; arrangements of rigid rods and flexible elements allow the robots to deform. This work proposes the use of multiple, modular, tensegrity robots that can move and compliantly connect to assemble larger, compliant, lightweight, strong structures and scaffolding. The focus is on proof-of-concept designs for the modular robots themselves and their docking mechanisms, which can allow the easy deployment of structures in unstructured environments. These mechanisms include (electro)magnets to allow each individual robot to connect and disconnect on cue. An exciting direction is the design of specific module and structure designs to fit the mission at hand. For example, this work highlights how the considered three bar structures could stack to form a column or deform on one side to create an arch. A critical component of future work will involve the development of algorithms for automatic design and layout of modules in structures.