Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There have been many efforts to broaden participation and diversity in the geosciences with varying degrees of success. The goal of the National Science Foundation-funded GeoScholar Program in the School of the Earth, Ocean & Environment (SEOE) at the University of South Carolina was to increase geoscience exposure and the number of geoscience undergraduate majors (environmental, geological, and marine sciences) from low-income, minority, and first-generation college backgrounds.more » « less
-
ABSTRACT The trace element composition of planktic foraminifera shells is influenced by both environmental and biological factors (‘vital effects’). As trace elements in individual foraminifera shells are increasingly used as paleoceanographic tools, understanding how trace element ratios vary between individuals, among species, and in response to high frequency environmental variability is of critical importance. Here, we present a three-year plankton tow record (2010–2012) of individual shell trace element (Mg, Sr, Ba, and Mn) to Ca ratios in the planktic species Globigerina ruber (pink), Orbulina universa, and Globorotalia menardii collected throughout the upper 100 m of Cariaco Basin. Plankton tows were paired with in situ measurements of water column chemistry and hydrography. The Mg/Ca ratio reflects different calcification temperatures in all three species when calculated using species-specific temperature relationships from single-species averages of Mg/Ca. However, individual shell Mg/Ca often results in unrealistic temperate estimates. The Sr/Ca ratios are relatively constant among the four species. Ratios of Mn/Ca and Ba/Ca are highest in G. menardii and are not reflective of elemental concentrations in open waters. The Mn/Ca ratio is elevated in all species during upwelling conditions, and a similar trend is demonstrated in Neogloboquadrina incompta shells from the California margin collected during upwelling periods. Together this suggests that elevated shell Mn/Ca may act as a tracer for upwelling of deeper water masses. Our results emphasize the large degree of trace element variability present among and within species living within a limited depth habitat and the roles of biology, calcification environment, and physical mixing in mediating how trace element geochemistry reflects environmental variability in the surface ocean.more » « less
-
Marine protists are integral to the structure and function of pelagic ecosystems and marine carbon cycling, with rhizarian biomass alone accounting for more than half of all mesozooplankton in the oligotrophic oceans. Yet, understanding how their environment shapes diversity within species and across taxa is limited by a paucity of observations of heritability and life history. Here, we present observations of asexual reproduction, morphologic plasticity, and ontogeny in the planktic foraminifer Neogloboquadrina pachyderma in laboratory culture. Our results demonstrate that planktic foraminifera reproduce both sexually and asexually and demonstrate extensive phenotypic plasticity in response to nonheritable factors. These two processes fundamentally explain the rapid spatial and temporal response of even imperceptibly low populations of planktic foraminifera to optimal conditions and the diversity and ubiquity of these species across the range of environmental conditions that occur in the ocean.more » « less
-
The fate of organic matter (OM) in the deep ocean remains enigmatic, with little understood regarding the flux and its utilization by deep food webs. We used compound-specific nitrogen stable isotope ratios of source amino acids measured in particle size classes and deep zooplankton (700–1500 m) to determine the contribution of small (0.7–53 μm) vs. large particles (> 53 μm) to their diet at four sites in the North Pacific. Our results show that small particles constitute between 9% and 98% of zooplankton diets, being the contribution higher at sites with lower flux regimes. The contribution of small particles to the diet of deep zooplankton was also higher when biomass of vertical migrators, and therefore actively transported OM, was lower. Climate-driven changes in primary production and export are expected to shift particle fluxes to smaller size classes, and thus their importance in midwater food webs may become more widespread.more » « less
-
Water column bulk Pseudo-nitzschia abundance and the dissolved and particulate domoic acid (DA) concentrations were measured in the Santa Barbara Basin (SBB), California from 2009–2013 and compared to bulk Pseudo-nitzschia cell abundance and DA concentrations and fluxes in sediment traps moored at 147 m and 509 m. Pseudo-nitzschia abundance throughout the study period was spatially and temporally heterogeneous (<200 cells L−1 to 3.8 × 106 cells L−1, avg. 2 × 105 ± 5 × 105 cells L−1) and did not correspond with upwelling conditions or the total DA (tDA) concentration, which was also spatially and temporally diverse (<1.3 ng L−1 to 2.2 × 105 ng L−1, avg. 7.8 × 103 ± 2.2 × 104 ng L−1). We hypothesize that the toxicity is likely driven in part by specific Pseudo-nitzschia species as well as bloom stage. Dissolved (dDA) and particulate (pDA) DA were significantly and positively correlated (p < 0.01) and both comprised major components of the total DA pool (pDA = 57 ± 35%, and dDA = 42 ± 35%) with substantial water column concentrations (>1000 cells L−1 and tDA = 200 ng L−1) measured as deep as 150 m. Our results highlight that dDA should not be ignored when examining bloom toxicity. Although water column abundance and pDA concentrations were poorly correlated with sediment trap Pseudo-nitzschia abundance and fluxes, DA toxicity is likely associated with senescent blooms that rapidly sink to the seafloor, adding another potential source of DA to benthic organisms.more » « less
-
Abstract Particulate organic matter settling out of the euphotic zone is a major sink for atmospheric carbon dioxide and serves as a primary food source to mesopelagic food webs. Degradation of this organic matter encompasses a suite of mechanisms that attenuate flux, including heterotrophic metabolic processes of microbes and metazoans. The relative contributions of microbial and metazoan heterotrophy to flux attenuation, however, have been difficult to determine. We present results of compound specific nitrogen isotope analysis of amino acids of sinking particles from sediment traps and size‐fractionated particles from in situ filtration between the surface and 500 m at Ocean Station Papa, collected during NASA EXPORTS (EXport Processes in the Ocean from RemoTe Sensing). With increasing depth, we observe: (1) that, based on theδ15N values of threonine, fecal pellets dominate the sinking particle flux and that attenuation of downward particle flux occurs largely via disaggregation in the upper mesopelagic; (2) an increasing trophic position of particles in the upper water column, reflecting increasing heterotrophic contributions to the nitrogen pool and the loss of particles via remineralization; and (3) increasingδ15N values of source amino acids in submicron and small (1–6μm) particles, reflecting microbial particle solubilization. We further employ a Bayesian mixing model to estimate the relative proportions of fecal pellets, phytodetritus, and microbially degraded material in particles and compare these results and our interpretations of flux attenuation mechanisms to other, independent methods used during EXPORTS.more » « less
-
Abstract A mechanistic understanding of dissolved organic phosphorus (DOP) utilization, and its role in the marine P cycle, requires knowledge of DOP molecular composition. In this study, a recently developed approach coupling electrodialysis and reverse osmosis with solution31P‐NMR analysis was used to examine DOP composition within a tidally dominated salt‐marsh estuary (North Inlet, South Carolina) over seasonal and tidal time frames. The isolation technique allowed for near complete recovery of the DOP pool (90% ± 13%;n= 12) with six broad compound classes quantified: phosphonates, phosphomonoesters, phosphodiesters, pyrophosphate, di‐ and tri‐phosphate nucleotides (nucleoPα), and polyphosphate. Our results indicate that phosphomonoesters (ca. 61%) and phosphodiesters (ca. 31%) comprise the majority of the DOP pool, with relatively small contributions from pyrophosphates (ca. 4%), phosphonates (ca. 2%), nucleoPα(ca. 1%), and polyphosphates (ca. 1%). The study found no significant differences in DOP composition or concentration between tidal stages, despite significant tidal changes in dissolved organic nitrogen (DON):DOP stoichiometry. Significant seasonal variation was observed, with higher concentrations of phosphonates, nucleoPα, and monophosphates and lower phosphomonoester concentrations in Fall relative to all other seasons. We hypothesize that these seasonal variations reflect the balance between specific compound class seasonal production, lability, and local P demands associated with marine vs. terrestrial sources. Our results indicate that DOP composition exists at a dynamic equilibrium that is strongly conserved across diverse marine environments.more » « less
An official website of the United States government
