skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Benouadah, Selma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As more aircraft are using the Automatic Dependent Surveillance-Broadcast (ADS-B) devices for navigation and surveillance, the risks of injection attacks are highly increasing. The exchanged ADS-B messages are neither encrypted nor authenticated while containing valuable operational information, which imposes high risk on the safety of the airspace. For this reason, we propose in this paper an SVM-based ADS-B message injection attack detection technique for UAV onboard implementation. First, we simulated several message injection attacks on real raw ADS-B data. Then, three Support Vector Machine (SVM) models were examined in terms of two types of assessment criteria, detection efficiency and model performance. The results show that the C-SVM model is the best fit for our application, with an accuracy of 95.32%. 
    more » « less
  2. Unmanned Aerial Systems (UAS) heavily depend on the Global Positioning System (GPS) for navigation. However, the unencrypted civilian GPS signals are subject to different types of threats, including GPS spoofing attacks. In this paper, we evaluate five instance-based learning models for GPS spoofing detection in UAS, namely K Nearest Neighbor, Radius Neighbor, Linear Support Vector Machine (SVM), C-SVM, and Nu-SVM. We used software-defined radio units to collect and extract features from satellite signals. Then, we simulated three types of GPS spoofing attacks specifically the simplistic, intermediate, and sophisticated attacks. The evaluation results show that Nu-SVM outperforms the other instance learning classifiers in terms of accuracy, probability of detection, probability of false alarm, and probability of misdetection. In addition, the model shows good computational performance regarding memory usage and processing time in the detection phase. 
    more » « less
  3. Advances made in Unmanned Aircraft Vehicles (UAVs) have increased rapidly in the last decade resulting in new applications in both civil and military spheres. However, with the growth in the usage of these systems, various cybersecurity challenges arose unveiling the vulnerabilities of UAV wireless networks. Among the attacks that threaten the network's availability and reduce their performance are jamming attacks. Several approaches have been proposed to address this problem; however, most of them are not suitable for UAVs due to their reduced size, weight, and power constraints. In this paper, we propose a lightweight machine learning technique, LightGBM, to detect deceptive jamming attacks on UAV networks. The performance of this model is compared to that of three boosting and bagging-based machine learning models namely, XGBoost, Gradient Boost, and Random Forest. The results show that, although the LightGBM model has slightly lower accuracy (98.4%) than Gradient Boost (99%) and Random Forest (98.87%), it is 21 times faster and occupies two times less memory during the prediction than Gradient Boost and Random Forest. 
    more » « less
  4. The security of Unmanned Aerial System (UAS) networks is becoming crucial as their number and application in several fields are increasing every day. For navigation and positioning, the Global Navigation System (GPS) is essential as it provides an accurate location for the UAS. However, since the civilian GPS signals are open and unencrypted, attackers target them in different ways such as spoofing attacks. To address this security concern, we propose a comparison of several tree-based machine learning models, namely Random Forest, Gradient Boost, XGBoost, and LightGBM, to detect GPS spoofing attacks. In this work, the dataset was built of real GPS signals that were collected using a Software Defined Radio unit and different types of simulated GPS spoofing attacks. The results show that XGBoost has the best accuracy (95.52%) and fastest detection time (2ms), which makes this model appropriate for UAS applications. 
    more » « less