skip to main content


Search for: All records

Creators/Authors contains: "Benton, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    API misuses are prevalent and extremely harmful. Despite various techniques have been proposed for API-misuse detection, it is not even clear how different types of API misuses distribute and whether existing techniques have covered all major types of API misuses. Therefore, in this paper, we conduct the first large-scale empirical study on API misuses based on 528,546 historical bug-fixing commits from GitHub (from 2011 to 2018). By leveraging a state-of-the-art fine-grained AST differencing tool, GumTree, we extract more than one million bug-fixing edit operations, 51.7% of which are API misuses. We further systematically classify API misuses into nine different categories according to the edit operations and context. We also extract various frequent API-misuse patterns based on the categories and corresponding operations, which can be complementary to existing API-misuse detection tools. Our study reveals various practical guidelines regarding the importance of different types of API misuses. Furthermore, based on our dataset, we perform a user study to manually analyze the usage constraints of 10 patterns to explore whether the mined patterns can guide the design of future API-misuse detection tools. Specifically, we find that 7,541 potential misuses still exist in latest Apache projects and 149 of them have been reported to developers. To date, 57 have already been confirmed and fixed (with 15 rejected misuses correspondingly). The results indicate the importance of studying historical API misuses and the promising future of employing our mined patterns for detecting unknown API misuses. 
    more » « less
  2. null (Ed.)
    Automated debugging techniques, including fault localization and program repair, have been studied for over a decade. However, the only existing connection between fault localization and program repair is that fault localization computes the potential buggy elements for program repair to patch. Recently, a pioneering work, ProFL, explored the idea of unified debugging to unify fault localization and program repair in the other direction for the first time to boost both areas. More specifically, ProFL utilizes the patch execution results from one state-of-the-art repair system, PraPR, to help improve state-of-the-art fault localization. In this way, ProFL not only improves fault localization for manual repair, but also extends the application scope of automated repair to all possible bugs (not only the small ratio of bugs that can be automatically fixed). However, ProFL only considers one APR system (i.e., PraPR), and it is not clear how other existing APR systems based on different designs contribute to unified debugging. In this work, we perform an extensive study of the unified-debugging approach on 16 state-of-the-art program repair systems for the first time. Our experimental results on the widely studied Defects4J benchmark suite reveal various practical guidelines for unified debugging, such as (1) nearly all the studied 16 repair systems can positively contribute to unified debugging despite their varying repairing capabilities, (2) repair systems targeting multi-edit patches can bring extraneous noise into unified debugging, (3) repair systems with more executed/plausible patches tend to perform better for unified debugging, and (4) unified debugging effectiveness does not rely on the availability of correct patches in automated repair. Based on our results, we further propose an advanced unified debugging technique, UniDebug++, which can localize over 20% more bugs within Top-1 positions than state-of-the-art unified debugging technique, ProFL. 
    more » « less
  3. Automated Program Repair (APR) is one of the most recent advances in automated debugging, and can directly fix buggy programs with minimal human intervention. Although various advanced APR techniques (including search-based or semantic-based ones) have been proposed, they mainly work at the source-code level and it is not clear how bytecode-level APR performs in practice. Also, empirical studies of the existing techniques on bugs beyond what has been reported in the original papers are rather limited. In this paper, we implement the first practical bytecode-level APR technique, PraPR, and present the first extensive study on fixing real-world bugs (e.g., Defects4J bugs) using JVM bytecode mutation. The experimental results show that surprisingly even PraPR with only the basic traditional mutators can produce genuine fixes for 17 bugs; with simple additional commonly used APR mutators, PraPR is able to produce genuine fixes for 43 bugs, significantly outperforming state-of-the-art APR, while being over 10X faster. Furthermore, we performed an extensive study of PraPR and other recent APR tools on a large number of additional real-world bugs, and demonstrated the overfitting problem of recent advanced APR tools for the first time. Lastly, PraPR has also successfully fixed bugs for other JVM languages (e.g., for the popular Kotlin language), indicating PraPR can greatly complement existing source-code-level APR. 
    more » « less