skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Betka, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 15, 2027
  2. null (Ed.)
    ABSTRACT The stratigraphic record of Cenozoic uplift and denudation of the Himalayas is distributed across its peripheral foreland basins, as well as in the sediments of the Ganges–Brahmaputra Delta (GBD) and the Bengal–Nicobar Fan (BNF). Recent interrogation of Miocene–Quaternary sediments of the GBD and BNF advance our knowledge of Himalayan sediment dispersal and its relationship to regional tectonics and climate, but these studies are limited to IODP boreholes from the BNF (IODP 354 and 362, 2015-16) and Quaternary sediment cores from the GBD (NSF-PIRE: Life on a tectonically active delta, 2010-18). We examine a complementary yet understudied stratigraphic record of the Miocene–Pliocene ancestral Brahmaputra Delta in outcrops of the Indo-Burman Ranges fold–thrust belt (IBR) of eastern India. We present detailed lithofacies assemblages of Neogene delta plain (Tipam Group) and intertidal to upper-shelf (Surma Group) deposits of the IBR based on two ∼ 500 m stratigraphic sections. New detrital-apatite fission-track (dAFT) and (U-Th)/He (dAHe) dates from the Surma Group in the IBR help to constrain maximum depositional ages (MDA), thermal histories, and sediment accumulation rates. Three fluvial facies (F1–F3) and four shallow marine to intertidal facies (M1–M4) are delineated based on analog depositional environments of the Holocene–modern GBD. Unreset dAFT and dAHe ages constrain MDA to ∼ 9–11 Ma for the Surma Group, which is bracketed by intensification of turbidite deposition on the eastern BNF (∼ 13.5–6.8 Ma). Two dAHe samples yielded younger (∼ 3 Ma) reset ages that we interpret to record cooling from denudation following burial resetting due to a thicker (∼ 2.2–3.2 km) accumulation of sediments near the depocenter. Thermal modeling of the dAFT and dAHe results using QTQt and HeFTy suggest that late Miocene marginal marine sediment accumulation rates may have ranged from ∼ 0.9 to 1.1 mm/yr near the center of the paleodelta. Thermal modeling results imply postdepositional cooling beginning at ∼ 8–6.5 Ma, interpreted to record onset of exhumation associated with the advancing IBR fold belt. The timing of post-burial exhumation of the IBR strata is consistent with previously published constraints for the avulsion of the paleo-Brahmaputra to the west and a westward shift of turbidite deposition on the BNF that started at ∼ 6.8 Ma. Our results contextualize tectonic controls on basin history, creating a pathway for future investigations into autogenic and climatic drivers of behavior of fluvial systems that can be extracted from the stratigraphic record. 
    more » « less
  3. This supplemental text (pp. 2-4) describes the analytical procedures for the detrital zircon fission track (dzFT) and detrital zircon U-Pb analyses (dzUPb). Sample locations are listed in supplemental file S1. The new dzUPb analytical data are presented in supplemental file S2. Supplemental files S3, S4, and S5 give the data sets used in the regional dzUPb compilations, a list of the compiled data, and the intersample comparison statistical results for the dzUPb compilations, respectively. Supplemental S6 contains the Monte-Carlo modeling results for the source terrane inversions using DZMix (Sundell and Saylor, 2017). Supplemental file S7 contains the full data tables and a summary of the dzFT results. All prior datasets were compiled from the supplemental files released with the original publications.</p> 
    more » « less
  4. Abstract The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region. 
    more » « less