Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Effective water resource management in the western United States (WUS) is possible only with accurate monitoring and forecasting of seasonal snowpack. Seasonal snowpack, a major water source for the WUS, is declining due to anthropogenic climate change. Overprinted on this trends is year-to-year variance in snowpack extent and mass due to influences from teleconnections related to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Recently in the 2015 and 2016 winters, extreme droughts in the coastal WUS, mainly the Pacific Northwest (PNW) states of Washington and Oregon were linked with anomalously warm sea surface temperatures (SST) in northeastern Pacific Ocean. Here, we use convergent cross maps (CCMs) to analyze time series of SSTs and snow water equivalent (SWE) in the PNW. For some ecoregions, we show that extratropical SSTs may have a stronger influence on snowfall and snow accumulation in the PNW compared to tropical indices of climatic variability. Cold (warm) SSTs in the northeast Pacific lead to high (low) snow years. CCMs also performed better in recreating SWE anomalies compared to linear regressions with lagged predictor variables. Accounting for the influence of SSTs may help water resource managers to better predict and prepare for extreme snow events in the future.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
The cross-equatorial southwesterly winds from the eastern equatorial Pacific direct moisture toward the Pacific coast of northwestern South America, where subsequent orographic lifting creates the wettest regions in the world. The Choco low-level jet is emblematic of broader westerly winds in this region and is projected to weaken by the end of the 21st century, but climate models show considerable disagreement about the extent of weakening. Using contemporary observations, we demonstrate that the configuration of westerly winds in the eastern equatorial Pacific is reflected by hydrogen isotopes in precipitation (δDp) in western Ecuador. As westerly winds strengthen, δDp increases from greater transport of δDvapor enriched in deuterium from the Eastern Pacific Warm Pool. We apply this framework to a new record of reconstructed δDp using leaf waxes in ocean sediments off the coast of Ecuador (ODP1239, 0◦40.32′ S, 82◦4.86′ W) that span the Plio-Pleistocene. Low δDp in the early Pliocene indicates weak westerly water vapor transport in a warmer climate state, which is attributed to a low sea surface temperature gradient between the cold tongue and off-equatorial regions in the eastern equatorial Pacific. Near 3 Ma, westerly water vapor transport weakens, possibly as a result of shifts in the Intertropical Convergence Zone forced by high latitude Northern Hemisphere cooling. In complementary isotope-enabled climate simulations, a weak Choco jet and westerly water vapor transport in the early Pliocene are matched by a decrease in δDp and hydroclimate changes in western Ecuador. Precipitation from the Choco jet can cause deadly landslides and weakened westerly winds in the early Pliocene implies a southward shift of these hazards along the Pacific coast of northwestern South America in the future.more » « less
-
Southwestern North America is currently experiencing a multidecadal megadrought, with severe consequences for water resources. However, significant uncertainty remains about 21st century precipitation changes in this semi-arid region. Paleoclimatic records are essential for both contextualizing current change, and for helping constrain the sensitivity of regional hydroclimate to large-scale global climate. In this paper, we present a new 2.8 Ma to present compound-specific isotopic record from Clayton Valley, the site of a long-lived paleolake in the southern Great Basin. Hydrogen and carbon isotopes from terrestrial plant leaf waxes provide evidence of past shifts in rainfall seasonality as well as ecosystem structure, and help contextualize the formation of this lithium-rich lacustrine basin. Our results suggest that regional hydroclimates underwent a substantial reorganization at the Plio-Pleistocene boundary, especially between 2.6 and 2.0 Ma. In this interval, a reduced latitudinal temperature gradient in the North Pacific likely resulted in a northward shift in storm tracks, and a reduction in winter rainfall over the southern Great Basin. This occurred against a background of increased summer rainfall and a greater accumulation of lithium in the lake basin. Our interpretation is corroborated by a compilation of Plio-Pleistocene north Pacific sea surface temperature records, as well as an isotope-enabled model simulation. Overall, these results suggest that past shifts in rainfall seasonality helped set the stage for the development and dessication of lithium-rich lacustrine deposits.more » « less
-
Abstract In August 2022, Death Valley, the driest place in North America, experienced record flooding from summertime rainfall associated with the North American monsoon (NAM). Given the socioeconomic cost of these type of events, there is a dire need to understand their drivers and future statistics. Existing theory predicts that increases in the intensity of precipitation is a robust response to anthropogenic warming. Paleoclimatic evidence suggests that northeast Pacific (NEP) sea surface temperature (SST) variability could further intensify summertime NAM rainfall over the desert southwest. Drawing on this paleoclimatic evidence, we use historical observations and reanalyzes to test the hypothesis that warm SSTs on the southern California margin are linked to more frequent extreme precipitation events in the NAM domain. We find that summers with above-average coastal SSTs are more favorable to moist convection in the northern edge of the NAM domain (southern California, Arizona, New Mexico, and the southern Great Basin). This is because warmer SSTs drive circulation changes that increase moisture flux into the desert southwest, driving more frequent precipitation extremes and increases in seasonal rainfall totals. These results, which are robust across observational products, establish a linkage between marine and terrestrial extremes, since summers with anomalously warm SSTs on the California margin have been linked to seasonal or multi-year NEP marine heatwaves. However, current generation earth system models (ESMs) struggle to reproduce the observed relationship between coastal SSTs and NAM precipitation. Across models, there is a strong negative relationship between the magnitude of an ESM’s warm SST bias on the California margin and its skill at reproducing the correlation with desert southwest rainfall. Given persistent NEP SST biases in ESMs, our results suggest that efforts to improve representation of climatological SSTs are crucial for accurately predicting future changes in hydroclimate extremes in the desert southwest.more » « less
-
Abstract The tropical Pacific climate has an outsized impact on global climate, yet future projections are poorly constrained. Data‐model comparisons from the mid‐Pliocene warm period (3.3 million years ago) can help investigate warm climate dynamics and evaluate model behavior. Here we compare proxy records to PlioMIP2 models and a model with modified cloud albedo. Relative to modern, the mid‐Pliocene warm period records show subsurface warming across the tropical Pacific, strong eastern Pacific surface warming and weak western Pacific surface warming. Using clustering analyses to group model behavior relative to the proxy data, we find the model cluster with the best fit with the proxy data has enhanced warming in mid‐latitude thermocline source water regions which connect to the equator through the ventilated thermocline. Our study shows tropical ocean heat content during the mid‐Pliocene warm period was higher than today and has broad implications for the ocean's ability to absorb anthropogenic heat.more » « lessFree, publicly-accessible full text available August 28, 2026
-
The response of the terrestrial biosphere to warming remains one of the most poorly understood and quantified aspects of the climate system. One way to test the behavior of the Earth system in warm climate states is to examine the geological record. The abundance, distribution, and/or isotopic composition of source-specific organic molecules (biomarkers) have been used to reconstruct terrestrial paleoenvironmental change over a range of geological timescales. Here, we review new or recently improved biomarker approaches for reconstructing ( a) physical climate variables (land temperature, rainfall), ( b) ecosystem state variables (vegetation, fire regime), and ( c) biogeochemical variables (soil residence time, methane cycling). This review encompasses a range of key compound classes (e.g., lipids, lignin, and carbohydrates). In each section, we explore the concept behind key biomarker approaches and discuss their successes as paleoenvironmental indicators. We emphasize that analyzing several biomarkers in tandem can provide unique insights into the Earth system. ▪ Biomarkers can be used to reconstruct terrestrial environmental change over a range of geological timescales. ▪ Analyzing several biomarkers in tandem can provide unique insights into the Earth system. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
Abstract The timing and mechanisms of past hydroclimate change in northeast Mexico are poorly constrained, limiting our ability to evaluate climate model performance. To address this, we present a multiproxy speleothem record of past hydroclimate variability spanning 62.5 to 5.1 ka from Tamaulipas, Mexico. Here we show a strong influence of Atlantic and Pacific sea surface temperatures on orbital and millennial scale precipitation changes in the region. Multiple proxies show no clear response to insolation forcing, but strong evidence for dry conditions during Heinrich Stadials. While these trends are consistent with other records from across Mesoamerica and the Caribbean, the relative importance of thermodynamic and dynamic controls in driving this response is debated. An isotope-enabled climate model shows that cool Atlantic SSTs and stronger easterlies drive a strong inter-basin sea surface temperature gradient and a southward shift in moisture convergence, causing drying in this region.more » « less
An official website of the United States government
