skip to main content


Search for: All records

Creators/Authors contains: "Bhuvanesh, Nattamai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Photolyses oftrans‐Fe(CO)3(P((CH2)n)3P) (n=10 (a), 12 (b), 14 (c), 16 (d), 18 (e)) in the presence of PMe3provide the first economical and scalable route to macrobicyclic dibridgehead diphosphines P((CH2)n)3P (1). These are isolated as mixtures ofin,in/out,outisomers that equilibrate with degeneratein,out/out,inisomers at 150 °C via pyramidal inversion at phosphorus. For the entire series, VT31P NMR data establish or boundKeq, rates, and activation parameters for a variety of phenomena, many of which involve homeomorphic isomerizations, topological processes by which certain molecules can turn themselves inside out (e. g.,in,inout,out). This provides the first detailed mapping of such trends in homologous series of aliphatic bicyclic compounds XE((CH2)n)3EX with any type of bridgehead. Isomeric diborane adducts1 a,d ⋅ 2BH3are also characterized. Crystal structures ofout,out1 aandin,in1 a ⋅ 2BH3aid isomer assignments and reveal unusual cage conformations.

     
    more » « less
  2. CuI catalyzes reactions of cis -(R 2 C(CH 2 PPh 2 ) 2 )Pt(CCCCH) 2 and cis -(R 2 C(CH 2 PPh 2 ) 2 )PtI 2 in secondary amine solvents HNR’ 2 to give the title adducts [(R 2 C(CH 2 PPh 2 ) 2 )Pt(CCCC)] 4 ·(H 2 NR’ 2 + I − ) n (R/R’/ n = Me/Et/1, Me/((CH 2 CH 2 ) 2 O) 0.5 /3, Et/Et/1, Et/CH 2 CHCH 2 /1; 92–42%). Crystal structures of these or closely related species establish folded Pt 4 cores containing ammonium cation guests, with NH/ and NCH/CC hydrogen bonding. DOSY NMR experiments show that the host/guest relationship can be maintained in solution. 
    more » « less
  3. The diphosphine complexes cis - or trans -PtCl 2 (P((CH 2 ) n ) 3 P) ( n = b/12, c/14, d/16, e/18) are demetalated by MCX nucleophiles to give the title compounds (P((CH 2 ) n ) 3 )P (3b–e, 91–71%). These “empty cages” react with PdCl 2 or PtCl 2 sources to afford trans -MCl 2 (P((CH 2 ) n ) 3 P). Low temperature 31 P NMR spectra of 3b and c show two rapidly equilibrating species (3b, 86 : 14; 3c, 97 : 3), assigned based upon computational data to in , in (major) and out , out isomers. These interconvert by homeomorphic isomerizations, akin to turning articles of clothing inside out (3b/c: Δ H ‡ 7.3/8.2 kcal mol −1 , Δ S ‡ −19.4/−11.8 eu, minor to major). At 150 °C, 3b, c, e epimerize to (60–51) : (40–49) mixtures of ( in , in / out , out ) :  in , out isomers, which are separated via the bis(borane) adducts 3b, c, e·2BH 3 . The configurational stabilities of in , out -3b, c, e preclude phosphorus inversion in the interconversion of in , in and out , out isomers. Low temperature 31 P NMR spectra of in , out -3b, c reveal degenerate in , out / out , in homeomorphic isomerizations (Δ G ‡Tc 12.1, 8.5 kcal mol −1 ). When ( in , in / out , out )-3b, c, e are crystallized, out , out isomers are obtained, despite the preference for in , in isomers in solution. The lattice structures are analyzed, and the D 3 symmetry of out , out -3c enables a particularly favorable packing motif. Similarly, ( in , in / out , out )-3c, e·2BH 3 crystallize in out , out conformations, the former with a cycloalkane solvent guest inside. 
    more » « less
  4. Reactions of trans-[[upper bond 1 start]Fe(CO)2(NO)(As((CH2)n)3As[upper bond 1 end])]+ BF4− (n = 10, 12, 14) and Bu4N+ Cl− afford the title compounds As((CH2)n)3As, which upon reaction (n = 14) with MCl2 (M = Pt, Ni), Rh(CO)(Cl), and Fe(CO)3 sources reconstitute cage like complexes trans-[upper bond 1 start]MLn(As((CH2)14)3A[upper bond 1 end]s). Reactions with H2O2 and BH3 give the corresponding arsine oxides and boranes. Crystal structures of metal-free species reveal out,out isomers, but cage complex formation is proposed to entail homeomorphic isomerization to in,in isomers with endo directed lone pairs. 
    more » « less
  5. A flexible polydentate bis(amidine) ligand LH 2 , LH 2 = {CH 2 NH( t Bu)CN-2-(6-MePy)} 2 , operates as a molecular lock for various coinage metal fragments and forms the dinuclear complexes [LH 2 (MCl) 2 ], M = Cu (1), Au (2), the coordination polymer [{(LH 2 ) 2 (py) 2 (AgCl) 3 }(py) 3 ] n (3), and the dimesityl-digold complex [LH 2 (AuMes) 2 ] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydrogen bonds of LH 2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C 2 -symmetrical structures in the solid state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal 13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular attractive interactions, predominantly representing dispersion forces, contributing to the conformational stabilization of the C 2 -symmetrical stereoisomers in the solid state. Variable-temperature 1 H NMR spectroscopy in combination with DFT calculations indicate a dynamic conformational interconversion between two C 2 -symmetrical ground state structures in solution (Δ G ‡c = 11.1–13.8 kcal mol −1 ), which is accompanied by the formation of an intermediate possessing C i symmetry that retains the hydrogen bonds. 
    more » « less
  6. Syntheses of Rh complexes of the phosphine-amido-silane SiNP ligand are reported. The reaction of the parent (SiNP)H ligand (4) with 0.5 equiv. [(COE)RhCl] 2 (COE = cis -cyclooctene) in the presence of NaN(SiME 3 ) 2 resulted in the formation of (SiNP)Rh(COE) (5). Compound 5 was converted to a series of (SiNP)Rh(P(OR) 3 ) complexes 6–10 (R = Ph, i Pr, n Bu, Et, or Me) by treatment with the corresponding phosphite. NMR and XRD structural data, as well as the DFT computational analysis indicate that compounds 5–10 are divided into two structural Types ( A and B ), differing in the nature of the interaction of the Si–H bond of the SiNP ligand with Rh. 
    more » « less