skip to main content

Search for: All records

Creators/Authors contains: "Birrer, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 7, 2023
  2. Strong lensing time delays can measure the Hubble constant H 0 independently of any other probe. Assuming commonly used forms for the radial mass density profile of the lenses, a 2% precision has been achieved with seven Time-Delay Cosmography (TDCOSMO) lenses, in tension with the H 0 from the cosmic microwave background. However, without assumptions on the radial mass density profile – and relying exclusively on stellar kinematics to break the mass-sheet degeneracy – the precision drops to 8% with the current data obtained using the seven TDCOSMO lenses, which is insufficient to resolve the H 0 tension. With the addition of external information from 33 Sloan Lens ACS (SLACS) lenses, the precision improves to 5% if the deflectors of TDCOSMO and SLACS lenses are drawn from the same population. We investigate the prospect of improving the precision of time-delay cosmography without relying on mass profile assumptions to break the mass-sheet degeneracy. Our forecasts are based on a previously published hierarchical framework. With existing samples and technology, 3.3% precision on H 0 can be reached by adding spatially resolved kinematics of the seven TDCOSMO lenses. The precision improves to 2.5% with the further addition of kinematics for 50 nontime-delay lensesmore »from SLACS and the Strong Lensing Legacy Survey. Expanding the samples to 40 time-delay and 200 nontime-delay lenses will improve the precision to 1.5% and 1.2%, respectively. Time-delay cosmography can reach sufficient precision to resolve the Hubble tension at 3–5 σ , without assumptions on the radial mass profile of lens galaxies. By obtaining this precision with and without external datasets, we will test the consistency of the samples and enable further improvements based on even larger future samples of time-delay and nontime-delay lenses (e.g., from the Rubin , Euclid , and Roman Observatories).« less
  3. ABSTRACT Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant (H0) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: The lensed host galaxy can be observed before or after the transient’s appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock data sets of 48 quasar lensing systems (i.e. adding AGN in the galaxy centre) and 48 galaxy–galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and H0. We find that the precision of the lens models (in terms of the deflector mass slope) ismore »better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of H0 precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which, in turn plays a key role in breaking the mass-sheet degeneracy and constraining H0.« less
  4. ABSTRACT We investigate the internal structure of elliptical galaxies at z ∼ 0.2 from a joint lensing–dynamics analysis. We model Hubble Space Telescope images of a sample of 23 galaxy–galaxy lenses selected from the Sloan Lens ACS (SLACS) survey. Whereas the original SLACS analysis estimated the logarithmic slopes by combining the kinematics with the imaging data, we estimate the logarithmic slopes only from the imaging data. We find that the distribution of the lensing-only logarithmic slopes has a median 2.08c ± 0.03 and intrinsic scatter 0.13 ± 0.02, consistent with the original SLACS analysis. We combine the lensing constraints with the stellar kinematics and weak lensing measurements, and constrain the amount of adiabatic contraction in the dark matter (DM) haloes. We find that the DM haloes are well described by a standard Navarro–Frenk–White halo with no contraction on average for both of a constant stellar mass-to-light ratio (M/L) model and a stellar M/L gradient model. For the M/L gradient model, we find that most galaxies are consistent with no M/L gradient. Comparison of our inferred stellar masses with those obtained from the stellar population synthesis method supports a heavy initial mass function (IMF) such as the Salpeter IMF. We discuss our results in themore »context of previous observations and simulations, and argue that our result is consistent with a scenario in which active galactic nucleus feedback counteracts the baryonic-cooling-driven contraction in the DM haloes.« less