skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Multi-messenger gravitational lensing
We introduce the rapidly emerging field of multi-messenger gravitational lensing—the discovery and science of gravitationally lensed phenomena in the distant universe through the combination of multiple messengers. This is framed by gravitational lensing phenomenology that has grown since the first discoveries in the twentieth century, messengers that span 30 orders of magnitude in energy from high-energy neutrinos to gravitational waves, and powerful ‘survey facilities’ that are capable of continually scanning the sky for transient and variable sources. Within this context, the main focus is on discoveries and science that are feasible in the next 5–10 years with current and imminent technology including the LIGO–Virgo–KAGRA network of gravitational wave detectors, the Vera C. Rubin Observatory and contemporaneous gamma/X-ray satellites and radio surveys. The scientific impact of even one multi-messenger gravitational lensing discovery will be transformational and reach across fundamental physics, cosmology and astrophysics. We describe these scientific opportunities and the key challenges along the path to achieving them. This article therefore describes the consensus that emerged at the eponymous Theo Murphy meeting in March 2024, and also serves as an introduction to this Theo Murphy meeting issue. This article is part of the Theo Murphy meeting issue ‘Multi-messenger gravitational lensing (Part 2)’.  more » « less
Award ID(s):
2207502 2307146
PAR ID:
10599498
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Philosophical Transactions of the Royal Society A
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
383
Issue:
2295
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lithium-rich oxychloride antiperovskites are promising solid electrolytes for enabling next-generation batteries. Here, we report a comprehensive study varying Li + concentrations in Li 3 OCl using ab initio molecular dynamics simulations. The simulations accurately capture the complex interactions between Li + vacancies ( V Li ′ ), the dominant mobile species in Li 3 OCl . The V Li ′ polarize and distort the host lattice, inducing additional non-vacancy-mediated diffusion mechanisms and correlated diffusion events that reduce the activation energy barrier at concentrations as low as 1.5% V Li ′ . Our analyses of discretized diffusion events in both space and time illustrate the critical interplay between correlated dynamics, polarization and local distortion in promoting ionic conductivity in Li 3 OCl . This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’. 
    more » « less
  2. Superionic solid electrolytes have widespread use in energy devices, but the fundamental motivations for fast ion conduction are often elusive. In this Perspective, we draw upon atomistic simulations of a wide range of superionic conductors to illustrate some ways frustration can lower diffusion cation barriers in solids. Based on our studies of halides, oxides, sulfides and hydroborates and a survey of published reports, we classify three types of frustration that create competition between different local atomic preferences, thereby flattening the diffusive energy landscape. These include chemical frustration, which derives from competing factors in the anion–cation interaction; structural frustration, which arises from lattice arrangements that induce site distortion or prevent cation ordering; and dynamical frustration, which is associated with temporary fluctuations in the energy landscape due to anion reorientation or cation reconfiguration. For each class of frustration, we provide detailed simulation analyses of various materials to show how ion mobility is facilitated, resulting in stabilizing factors that are both entropic and enthalpic in origin. We propose the use of these categories as a general construct for classifying frustration in superionic conductors and discuss implications for future development of suitable descriptors and improvement strategies. This article is part of the Theo Murphy meeting issue ‘Understanding fast-ion conduction in solid electrolytes’. 
    more » « less
  3. Dainton, John (Ed.)
    Improving models of species' distributions is essential for conservation, especially in light of global change. Species distribution models (SDMs) often rely on mean environmental conditions, yet species distributions are also a function of environmental heterogeneity and filtering acting at multiple spatial scales. Geodiversity, which we define as the variation of abiotic features and processes of Earth's entire geosphere (inclusive of climate), has potential to improve SDMs and conservation assessments, as they capture multiple abiotic dimensions of species niches, however they have not been sufficiently tested in SDMs. We tested a range of geodiversity variables computed at varying scales using climate and elevation data. We compared predictive performance of MaxEnt SDMs generated using CHELSA bioclimatic variables to those also including geodiversity variables for 31 mammalian species in Colombia. Results show the spatial grain of geodiversity variables affects SDM performance. Some variables consistently exhibited an increasing or decreasing trend in variable importance with spatial grain, showing slight scale-dependence and indicating that some geodiversity variables are more relevant at particular scales for some species. Incorporating geodiversity variables into SDMs, and doing so at the appropriate spatial scales, enhances the ability to model species-environment relationships, thereby contributing to the conservation and management of biodiversity. This article is part of the Theo Murphy meeting issue ‘Geodiversity for science and society’. 
    more » « less
  4. The permafrost region has accumulated organic carbon in cold and waterlogged soils over thousands of years and now contains three times as much carbon as the atmosphere. Global warming is degrading permafrost with the potential to accelerate climate change as increased microbial decomposition releases soil carbon as greenhouse gases. A 19-year time series of soil and ecosystem respiration radiocarbon from Alaska provides long-term insight into changing permafrost soil carbon dynamics in a warmer world. Nine per cent of ecosystem respiration and 23% of soil respiration observations had radiocarbon values more than 50‰ lower than the atmospheric value. Furthermore, the overall trend of ecosystem and soil respiration radiocarbon values through time decreased more than atmospheric radiocarbon values did, indicating that old carbon degradation was enhanced. Boosted regression tree analyses showed that temperature and moisture environmental variables had the largest relative influence on lower radiocarbon values. This suggested that old carbon degradation was controlled by warming/permafrost thaw and soil drying together, as waterlogged soil conditions could protect soil carbon from microbial decomposition even when thawed. Overall, changing conditions increasingly favoured the release of old carbon, which is a definitive fingerprint of an accelerating feedback to climate change as a consequence of warming and permafrost destabilization. This article is part of the Theo Murphy meeting issue ‘Radiocarbon in the Anthropocene’. 
    more » « less
  5. The multiplication rates of pathogenic organisms influence disease progression, efficacy of immunity and therapeutics, and potential for within-host evolution. Thus, accurate estimates of multiplication rates are essential for biological understanding. We recently showed that common methods for inferring multiplication rates from malaria infection data substantially overestimate true values (i.e. under simulated scenarios), providing context for extraordinarily large estimates in human malaria parasites. A key unknown is whether this bias arises specifically from malaria parasite biology or represents a broader concern. Here, we identify the potential for biased multiplication rate estimates across pathogenic organisms with different developmental biology by generalizing a within-host malaria model. We find that diverse patterns of developmental sampling bias—the change in detectability over developmental age—reliably generate overestimates of the fold change in abundance, obscuring not just true growth rates but potentially even whether populations are expanding or declining. This pattern emerges whenever synchrony—the degree to which development is synchronized across the population of pathogenic organisms comprising an infection—decays with time. Only with simulated increases in synchrony do we find noticeable underestimates of multiplication rates. Obtaining robust estimates of multiplication rates may require accounting for diverse patterns of synchrony in pathogenic organisms. This article is part of the Theo Murphy meeting issue ‘Circadian rhythms in infection and immunity’. 
    more » « less