skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blecha, L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2026
  2. ABSTRACT It is difficult to accurately identify galaxy mergers and it is an even larger challenge to classify them by their mass ratio or merger stage. In previous work we used a suite of simulated mergers to create a classification technique that uses linear discriminant analysis to identify major and minor mergers. Here, we apply this technique to 1.3 million galaxies from the SDSS DR16 photometric catalogue and present the probability that each galaxy is a major or minor merger, splitting the classifications by merger stages (early, late, post-coalescence). We present publicly available imaging predictor values and all of the above classifications for one of the largest-yet samples of galaxies. We measure the major and minor merger fraction (fmerg) and build a mass-complete sample of galaxies, which we bin as a function of stellar mass and redshift. For the major mergers, we find a positive slope of fmerg with stellar mass and negative slope of fmerg with redshift between stellar masses of 10.5 < M*(log M⊙) < 11.6 and redshifts of 0.03 < z < 0.19. We are able to reproduce an artificial positive slope of the major merger fraction with redshift when we do not bin for mass or craft a complete sample, demonstrating the importance of mass completeness and mass binning. We determine that the positive trend of the major merger fraction with stellar mass is consistent with a hierarchical assembly scenario. The negative trend with redshift requires that an additional assembly mechanism, such as baryonic feedback, dominates in the local Universe. 
    more » « less
  3. Abstract 3C 186, a radio-loud quasar at z = 1.0685, was previously reported to have both velocity and spatial offsets from its host galaxy, and has been considered as a promising candidate for a gravitational wave recoiling black hole triggered by a black hole merger. Another possible scenario is that 3C 186 is in an ongoing galaxy merger, exhibiting a temporary displacement. In this study, we present analyses of new deep images from the Hubble Space Telescope WFC3-IR and Advanced Camera for Surveys, aiming to characterize the host galaxy and test this alternative scenario. We carefully measure the light-weighted center of the host and reveal a significant spatial offset from the quasar core (11.1 ± 0.1 kpc). The direction of the confirmed offset aligns almost perpendicularly to the radio jet. We do not find evidence of a recent merger, such as a young starburst in disturbed outskirts, but only marginal light concentration in F160W at ∼30 kpc. The host consists of mature (≳200 Myr) stellar populations and one compact star-forming region. We compare with hydrodynamical simulations and find that those observed features are consistently seen in late-stage merger remnants. Taken together, those pieces of evidence indicate that the system is not an ongoing/young merger remnant, suggesting that the recoiling black hole scenario is still a plausible explanation for the puzzling nature of 3C 186. 
    more » « less
  4. null (Ed.)
  5. ABSTRACT The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10−15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit. 
    more » « less
  6. Abstract The Australian, Chinese, European, Indian, and North American pulsar timing array (PTA) collaborations recently reported, at varying levels, evidence for the presence of a nanohertz gravitational-wave background (GWB). Given that each PTA made different choices in modeling their data, we perform a comparison of the GWB and individual pulsar noise parameters across the results reported from the PTAs that constitute the International Pulsar Timing Array (IPTA). We show that despite making different modeling choices, there is no significant difference in the GWB parameters that are measured by the different PTAs, agreeing within 1σ. The pulsar noise parameters are also consistent between different PTAs for the majority of the pulsars included in these analyses. We bridge the differences in modeling choices by adopting a standardized noise model for all pulsars and PTAs, finding that under this model there is a reduction in the tension in the pulsar noise parameters. As part of this reanalysis, we “extended” each PTA’s data set by adding extra pulsars that were not timed by that PTA. Under these extensions, we find better constraints on the GWB amplitude and a higher signal-to-noise ratio for the Hellings–Downs correlations. These extensions serve as a prelude to the benefits offered by a full combination of data across all pulsars in the IPTA, i.e., the IPTA’s Data Release 3, which will involve not just adding in additional pulsars but also including data from all three PTAs where any given pulsar is timed by more than a single PTA. 
    more » « less