skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bobev, Svilen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reported is the synthesis of a new polar intermetallic phase, Ca4CdIn2Ge4, crystals of which can be readily obtained employing the In‐flux method. The structure and the chemical composition of the new compound are established based on single‐crystal X‐Ray diffraction and energy‐dispersive X‐Ray spectroscopy data. Ca4CdIn2Ge4crystallizes in a monoclinic crystal system with the space groupC2/m(no. 12) with lattice parametersa = 16.7383(12) Å,b = 4.4235(3) Å,c = 7.4322(5) Å, andβ = 106.560(1)°. The structure can formally be classified as a variant of the Mg5Si6structure type (Pearson symbolmS22). Considering the InGe and CdGe interactions as mostly covalent, the polyanionic substructure can be rationalized as consisting of ribbons of edge‐shared [InGe4] tetrahedra connected by Ge2dimers and bridged by Cd atoms in nearly square‐planar environment. Chemical bonding analysis based on TB‐LMTO‐ASA calculations affirms the notion for covalent character of the GeGe bonding with the dimers. The calculations also show that the bonding in the tetrahedra is more covalent in character than the bonding in square‐planar fragments, with the CaGe interactions being the least covalent among all interactions, though not exactly ionic. 
    more » « less
    Free, publicly-accessible full text available May 12, 2026
  2. The compounds AELi2Ge (AE = Ca, Sr and Ba) were synthesized, and their structures were determined as a part of the exploratory work in the Li-rich regions of the respective ternary systems. The three compounds are isostructural, and their crystal structure is analogous with the orthorhombic structure of BaLi2Si and KLi2As (space group Pmmn). The atomic arrangement can be viewed as an intergrowth of corrugated AEGe layers, alternated with slabs of Li atoms, suggestive of the possible application of these phases as electrode materials for lithium-ion batteries. Both experimental electronic density and calculated electronic structure suggest the existence of Li–Li and Li–Ge interactions with largely covalent character. Despite that, the valence electrons can be partitioned as (AE2+)(Li+)2(Ge4–), i.e., the title compounds can be viewed as valence-precise Zintl phases. The band structure calculations for BaLi2Ge show that a bona fide energy gap in the band structure does not exist and that the expected poor metallic behavior is originated from the AEGe sub-lattice and related to hybridization of Ba5d and Ge3p states in the valence band in proximity of the Fermi level. In addition, electrochemical measurements indicate that Li atoms can be intercalated into CaGe with a maximum capacity of 446 mAh/g, close to the theoretical value of 480 mAh/g of CaLi2Ge, which reveals the possibility of this Li-rich compound to be used as an electrode in Li-ion batteries. 
    more » « less
  3. New structural insights into Li7−xSn2reveal partial/vacant Li occupancy. 
    more » « less
    Free, publicly-accessible full text available July 29, 2026
  4. Reported are the synthesis and structural characterization of a series of quaternary lithium-alkaline earth metal alumo-silicides and alumo-germanides with the base formula A2LiAlTt2 (A = Ca, Sr, Ba; Tt = Si, Ge). To synthesize each compound, a mixture of the elements with the desired stoichiometric ratio was loaded into a niobium tube, arc welded shut, enclosed in a silica tube under vacuum, and heated in a tube furnace. Each sample was analyzed by powder and single-crystal X-ray diffraction, and the crystal structure of each compound was confirmed and refined from single-crystal X-ray diffraction data. The structures, despite the identical chemical formulae, are different, largely dependent on the nature of the alkaline earth metal. The differing cation determines the structure type—the calcium compounds are part of the TiNiSi family with the Pnma space group, the strontium compounds are isostructural with Na2LiAlP2 with the Cmce space group, and the barium compounds crystallize with the PbFCl structure type in the P4/nmm space group. The anion (silicon or germanium) only impacts the size of the unit cell, with the silicides having smaller unit cell volumes than the germanides. 
    more » « less
  5. Clathrate phases with crystal structures exhibiting complex disorder have been the subject of many prior studies. Here we report syntheses, crystal and electronic structure, and chemical bonding analysis of a Li-substituted Ge-based clathrate phase with the refined chemical formula Ba8Li5.0(1)Ge41.0, which is a rare example of ternary clathrate-I where alkali metal atoms substitute framework Ge atoms. Two different synthesis methods to grow single crystals of the new clathrate phase are presented, in addition to the classical approach towards polycrystalline materials by combining pure elements in desired stoichiometric ratios. Structure elucidations for samples from different batches were carried out by single-crystal and powder X-ray diffraction methods. The ternary Ba8Li5.0(1)Ge41.0 phase crystallizes in the cubic type-I clathrate structure (space group no. 223, a  10.80 Å), with the unit cell being substantially larger compared to the binary phase Ba8Ge43 (Ba8□3Ge43, a  10.63 Å). The expansion of the unit cell is the result of the Li atoms filling vacancies and substituting atoms in the Ge framework, with Li and Ge co-occupying one crystallographic (6c) site. As such, the Li atoms are situated in four-fold coordination environment surrounded by equidistant Ge atoms. Analysis of chemical bonding applying the electron density/ electron localizability approach reveals ionic interaction of barium with the Li–Ge framework, while the lithium-germanium bonds are strongly polar covalent. 
    more » « less
  6. The calcium- and strontium- alumo-germanides SrxCa1–xAl2Ge2 (x ≈ 0.4) and SrAl2Ge2 have been synthesized and structurally characterized. Additionally, a binary calcium germanide CaGe has also been identified as a byproduct. All three crystal structures have been established from single-crystal X-ray diffraction methods and refined with high accuracy and precision. The binary CaGe crystallizes with a CrB-type structure in the orthorhombic space group Cmcm (no. 63; Z = 4; Pearson symbol oC8), where the germanium atoms are interconnected into infinite zigzag chains, formally [Ge]2−. The calcium atoms are arranged in monocapped trigonal prisms, centered by Ge atoms. SrxCa1−xAl2Ge2 (x ≈ 0.4) and SrAl2Ge2 have been confirmed to crystallize with a CaAl2Si2-type structure in the trigonal space group P3¯m1 (no. 164; Z = 1; Pearson symbol hP5), where the germanium and aluminum atoms form puckered double-layers, formally [Al2Ge2]2−. The calcium atoms are located between the layers and reside inside distorted octahedra of Ge atoms. All presented structures have a valence electron count satisfying the octet rules (e.g., Ca2+Ge2− and Ca2+[Al2Ge2]2−) and can be regarded as Zintl phases. 
    more » « less