skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bonizzoni, Paola"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inenaga, Shunsuke; Puglisi, Simon J (Ed.)
    Within the field of haplotype analysis, the Positional Burrows-Wheeler Transform (PBWT) stands out as a key innovation, addressing numerous challenges in genomics. For example, Sanaullah et al. introduced a PBWT-based method that addresses the haplotype threading problem, which involves representing a query haplotype through a minimal set of substrings. To solve this problem using the PBWT data structure, they formulate the Minimal Positional Substring Cover (MPSC) problem, and then, subsequently present a solution for it. Additionally, they present and solve several variants of this problem: k-MPSC, leftmost MPSC, rightmost MPSC, and length-maximal MPSC. Yet, a full PBWT is required for each of their solutions, which yields a significant memory usage requirement. Here, we take advantage of the latest results on run-length encoding the PBWT, to solve the MPSC in a sublinear amount of space. Our methods involve demonstrating that k-Set Maximal Exact Matches (k-SMEMs) can be computed in a sublinear amount of space via efficient computation of k-Matching Statistics (k-MS). This leads to a solution that requires sublinear space for, not only the MPSC problem, but for all its variations proposed by Sanaullah et al. Most importantly, we present experimental results on haplotype panels from the 1000 Genomes Project data that show the utility of these theoretical results. We conclusively demonstrate that our approach markedly decreases the memory required to solve the MPSC problem, achieving a reduction of at least two orders of magnitude compared to the method proposed by Sanaullah et al. This efficiency allows us to solve the problem on large versions of the problem, where other methods are unable to scale to. In summary, the creation of {μ}-PBWT paves the way for new possibilities in conducting in-depth genetic research and analysis on a large scale. All source code is publicly available at https://github.com/dlcgold/muPBWT/tree/k-smem. 
    more » « less
  2. Structural variants (SVs) account for a large amount of sequence variability across genomes and play an important role in human genomics and precision medicine. Despite intense efforts over the years, the discovery of SVs in individuals remains challenging due to the diploid and highly repetitive structure of the human genome, and by the presence of SVs that vastly exceed sequencing read lengths. However, the recent introduction of low-error long-read sequencing technologies such as PacBio HiFi may finally enable these barriers to be overcome. Here we present SV discovery with sample-specific strings (SVDSS)—a method for discovery of SVs from long-read sequencing technologies (for example, PacBio HiFi) that combines and effectively leverages mapping-free, mapping-based and assembly-based methodologies for overall superior SV discovery performance. Our experiments on several human samples show that SVDSS outperforms state-of-the-art mapping-based methods for discovery of insertion and deletion SVs in PacBio HiFi reads and achieves notable improvements in calling SVs in repetitive regions of the genome. 
    more » « less
  3. Abstract Computational pangenomics is an emerging research field that is changing the way computer scientists are facing challenges in biological sequence analysis. In past decades, contributions from combinatorics, stringology, graph theory and data structures were essential in the development of a plethora of software tools for the analysis of the human genome. These tools allowed computational biologists to approach ambitious projects at population scale, such as the 1000 Genomes Project. A major contribution of the 1000 Genomes Project is the characterization of a broad spectrum of genetic variations in the human genome, including the discovery of novel variations in the South Asian, African and European populations—thus enhancing the catalogue of variability within the reference genome. Currently, the need to take into account the high variability in population genomes as well as the specificity of an individual genome in a personalized approach to medicine is rapidly pushing the abandonment of the traditional paradigm of using a single reference genome. A graph-based representation of multiple genomes, or a graph pangenome , is replacing the linear reference genome. This means completely rethinking well-established procedures to analyze, store, and access information from genome representations. Properly addressing these challenges is crucial to face the computational tasks of ambitious healthcare projects aiming to characterize human diversity by sequencing 1M individuals (Stark et al. 2019). This tutorial aims to introduce readers to the most recent advances in the theory of data structures for the representation of graph pangenomes. We discuss efficient representations of haplotypes and the variability of genotypes in graph pangenomes, and highlight applications in solving computational problems in human and microbial (viral) pangenomes. 
    more » « less
  4. Stamatakis, Alexandros (Ed.)
    Abstract Motivation Comparative genome analysis of two or more whole-genome sequenced (WGS) samples is at the core of most applications in genomics. These include the discovery of genomic differences segregating in populations, case-control analysis in common diseases and diagnosing rare disorders. With the current progress of accurate long-read sequencing technologies (e.g. circular consensus sequencing from PacBio sequencers), we can dive into studying repeat regions of the genome (e.g. segmental duplications) and hard-to-detect variants (e.g. complex structural variants). Results We propose a novel framework for comparative genome analysis through the discovery of strings that are specific to one genome (‘samples-specific’ strings). We have developed a novel, accurate and efficient computational method for the discovery of sample-specific strings between two groups of WGS samples. The proposed approach will give us the ability to perform comparative genome analysis without the need to map the reads and is not hindered by shortcomings of the reference genome and mapping algorithms. We show that the proposed approach is capable of accurately finding sample-specific strings representing nearly all variation (>98%) reported across pairs or trios of WGS samples using accurate long reads (e.g. PacBio HiFi data). Availability and implementation Data, code and instructions for reproducing the results presented in this manuscript are publicly available at https://github.com/Parsoa/PingPong. Supplementary information Supplementary data are available at Bioinformatics Advances online. 
    more » « less
  5. null (Ed.)
    Abstract Background Cancer progression reconstruction is an important development stemming from the phylogenetics field. In this context, the reconstruction of the phylogeny representing the evolutionary history presents some peculiar aspects that depend on the technology used to obtain the data to analyze: Single Cell DNA Sequencing data have great specificity, but are affected by moderate false negative and missing value rates. Moreover, there has been some recent evidence of back mutations in cancer: this phenomenon is currently widely ignored. Results We present a new tool, , that reconstructs a tumor phylogeny from Single Cell Sequencing data, allowing each mutation to be lost at most a fixed number of times. The General Parsimony Phylogeny from Single cell () tool is open source and available at https://github.com/AlgoLab/gpps . Conclusions provides new insights to the analysis of intra-tumor heterogeneity by proposing a new progression model to the field of cancer phylogeny reconstruction on Single Cell data. 
    more » « less
  6. Abstract Motivation In recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging Single-Cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. Results We present SASC (Simulated Annealing Single-Cell inference): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data sets. In particular, we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods. Availability The Simulated Annealing Single-Cell inference (SASC) tool is open source and available at https://github.com/sciccolella/sasc. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less