Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Numerous recent advances in robotics have been inspired by the biological principle of tensile integrity — or “tensegrity”— to achieve remarkable feats of dexterity and resilience. Tensegrity robots contain compliant networks of rigid struts and soft cables, allowing them to change their shape by adjusting their internal tension. Local rigidity along the struts provides support to carry electronics and scientific payloads, while global compliance enabled by the flexible interconnections of struts and cables allows a tensegrity to distribute impacts and prevent damage. Numerous techniques have been proposed for designing and simulating tensegrity robots, giving rise to a wide range of locomotion modes including rolling, vibrating, hopping, and crawling. Here, we review progress in the burgeoning field of tensegrity robotics, highlighting several emerging challenges, including automated design, state sensing, and kinodynamic motion planning.more » « less
-
Design thinking has an important role in STEM education. However, there has been limited research on how students engage in various modalities throughout the design process in hands-on design tasks. To promote middle school students’ engineering literacy, it is necessary to examine the use of design modalities during design. Using a case study approach, we examine middle school students’ design stages and modalities during design activities. We also identify the patterns of design processes in the teams with different design outcomes. Drawing on theories in design thinking and embodied interaction, we proposed a framework and devised a video analysis protocol to examine students’ design stages and modalities. Middle school students attending a design workshop engaged in two design activities in teams of 3–4 people. The design sessions were video recorded and analyzed using the video analysis protocol. The teams engaged in the stages of planning, building, and testing, while employing the verbal, the visual, and the physical modalities. The teams that varied in design outcomes exhibited different patterns in the use of multiple modalities during the design stages. This study contributes to research on design thinking by proposing a framework for analyzing middle school students’ multimodal design processes and presenting data visualization methods to identify patterns in design stages and modalities. The findings suggest the necessity to examine students’ use of design modalities in the context of design stages and imply the potential benefits of using multiple modalities during design. The implications for future research and education practices are also discussed.more » « less