Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The distribution of offsets between the brightest cluster galaxies of galaxy clusters and the centroid of their dark matter distributions is a promising probe of the underlying dark matter physics. In particular, since this distribution is sensitive to the shape of the potential in galaxy cluster cores, it constitutes a test of dark matter self-interaction on the largest mass scales in the universe. We examine these offsets in three suites of modern cosmological simulations; IllustrisTNG, MillenniumTNG and BAHAMAS. For clusters above , we examine the dependence of the offset distribution on gravitational softening length, the method used to identify centroids, redshift, mass, baryonic physics, and establish the stability of our results with respect to various nuisance parameter choices. We find that offsets are overwhelmingly measured to be smaller than the minimum converged length scale in each simulation, with a median offset of in the highest resolution simulation considered, TNG300-1, which uses a gravitational softening length of . We also find that centroids identified via source extraction on smoothed dark matter and stellar particle data are consistent with the potential minimum, but that observationally relevant methods sensitive to cluster strong gravitational lensing scales, or those using the the “light traces mass” approach, in this context meaning gas is used as a tracer for the potential, can overestimate offsets by factors of and , respectively. This has the potential to reduce tensions with existing offset measurements which have served as evidence for a nonzero dark matter self-interaction cross section.more » « less
-
ABSTRACT An important characteristic of cosmic hydrogen reionization is the growth of ionized gas bubbles surrounding early luminous objects. Ionized bubble sizes are beginning to be probed using Lyman α emission from high-redshift galaxies, and will also be probed by upcoming 21 cm maps. We present results from a study of bubble sizes using the state-of-the-art thesan radiation-hydrodynamics simulation suite, which self-consistently models radiation transport and realistic galaxy formation. We employ the mean free path method and track the evolution of the effective ionized bubble size at each point (Reff) throughout the Epoch of Reionization. We show that there is a slow growth period for regions ionized early, but a rapid ‘flash ionization’ process for regions ionized later as they immediately enter a large, pre-existing bubble. We also find that bright sources are preferentially in larger bubbles, and find consistency with recent observational constraints at z ≳ 9, but tension with idealized Lyman α damping-wing models at z ≈ 7. We find that high-overdensity regions have larger characteristic bubble sizes, but the correlation decreases as reionization progresses, likely due to runaway formation of large percolated bubbles. Finally, we compare the redshift at which a region transitions from neutral to ionized (zreion) with the time it takes to reach a given bubble size and conclude that zreion is a reasonable local probe of small-scale bubble size statistics ($$R_\text{eff} \lesssim 1\, \rm {cMpc}$$). However, for larger bubbles, the correspondence between zreion and size statistics weakens due to the time delay between the onset of reionization and the expansion of large bubbles, particularly at high redshifts.more » « less
-
ABSTRACT We investigate how feedback and environment shapes the X-ray scaling relations of early-type galaxies (ETGs), especially at the low-mass end. We select central-ETGs from the TNG100 box of IllustrisTNG that have stellar masses $$\log _{10}(M_{\ast }/\mathrm{M_{\odot }})\in [10.7, 11.9]$$. We derive mock X-ray luminosity (LX, 500) and spectroscopic-like temperature (Tsl, 500) of hot gas within R500 of the ETG haloes using the MOCK-X pipeline. The scaling between LX, 500 and the total mass within 5 effective radii ($$M_{5R_{\rm e}}$$) agrees well with observed ETGs from Chandra. IllustrisTNG reproduces the observed increase in scatter of LX, 500 towards lower masses, and we find that ETGs with $$\log _{10} (M_{5R_{\rm e}}/\mathrm{M_{\odot }}) \leqslant 11.5$$ with above-average LX, 500 experienced systematically lower cumulative kinetic AGN feedback energy historically (vice versa for below-average ETGs). This leads to larger gas mass fractions and younger stellar populations with stronger stellar feedback heating, concertedly resulting in the above-average LX, 500. The LX, 500–Tsl, 500 relation shows a similar slope to the observed ETGs but the simulation systematically underestimates the gas temperature. Three outliers that lie far below the LX–Tsl relation all interacted with larger galaxy clusters recently and demonstrate clear features of environmental heating. We propose that the distinct location of these backsplash ETGs in the LX–Tsl plane could provide a new way of identifying backsplash galaxies in future X-ray surveys.more » « less
-
ABSTRACT We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $$k \sim 10\, h$$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.more » « less
-
ABSTRACT The feedback loop between the galaxies producing the background radiation field for reionization and their growth is crucial, particularly for low-mass haloes. Despite this, the vast majority of galaxy formation studies employ a spatially uniform, time-varying reionizing background, with the majority of reionization studies employing galaxy formation models only required to work at high redshift. This paper uses the well-studied TNG galaxy formation model, calibrated at low redshift, coupled to the arepo-rt code, to self-consistently solve the coupled problems of galaxy evolution and reionization, evaluating the impact of patchy (and slow) reionization on early galaxies. thesan-hr is an extension of the thesan project to higher resolution (a factor of 50 increase, with a baryonic mass of mb ≈ 104 M⊙), to additionally enable the study of ‘mini-haloes’ with virial temperatures Tvir < 104 K. Comparing the self-consistent model to a uniform UV background, we show that galaxies in thesan-hr are predicted to be larger in physical extent (by a factor ∼2), less metal enriched (by ∼0.2 dex), and less abundant (by a factor ∼10 at M1500 = − 10) by z = 5. We show that differences in star formation and enrichment patterns lead to significantly different predictions for star formation in low mass haloes, low-metallicity star formation, and even the occupation fraction of haloes. We posit that cosmological galaxy formation simulations aiming to study early galaxy formation (z ≳ 3) must employ a spatially inhomogeneous UV background to accurately reproduce galaxy properties.more » « less
-
Abstract We explore the redshift evolution of the dynamical properties of massive clusters and their brightest cluster galaxies (BCGs) at z < 2 based on the IllustrisTNG-300 simulation. We select 270 massive clusters with M 200 < 10 14 M ⊙ at z = 0 and trace their progenitors based on merger trees. From 67 redshift snapshots covering z < 2, we compute the 3D subhalo velocity dispersion as a cluster velocity dispersion ( σ cl ). We also calculate the 3D stellar velocity dispersion of the BCGs ( σ *,BCG ). Both σ cl and σ *,BCG increase as the universe ages. The BCG velocity dispersion grows more slowly than the cluster velocity dispersion. Furthermore, the redshift evolution of the BCG velocity dispersion shows dramatic changes at some redshifts resulting from dynamical interaction with neighboring galaxies (major mergers). We show that σ *,BCG is comparable with σ cl at z > 1, offering an interesting observational test. The simulated redshift evolution of σ cl and σ *,BCG generally agrees with an observed cluster sample for z < 0.3, but with large scatter. Future large spectroscopic surveys reaching to high redshift will test the implications of the simulations for the mass evolution of both clusters and their BCGs.more » « less
-
ABSTRACT Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models.more » « less
-
Abstract A fundamental requirement for reionizing the Universe is that a sufficient fraction of the ionizing photons emitted by galaxies successfully escapes into the intergalactic medium. However, due to the scarcity of high-redshift observational data, the sources driving reionization remain uncertain. In this work, we calculate the ionizing escape fractions (fesc) of reionization-era galaxies from the state-of-the-art thesan simulations, which combine an accurate radiation-hydrodynamic solver (arepo-rt) with the well-tested IllustrisTNG galaxy formation model to self-consistently simulate both small-scale galaxy physics and large-scale reionization throughout a large patch of the universe ($$L_\text{box} = 95.5\, \text{cMpc}$$). This allows the formation of numerous massive haloes ($$M_\text{halo} \gtrsim 10^{10}\, {\text{M}_{\odot }}$$), which are often statistically underrepresented in previous studies but are believed to be important to achieving rapid reionization. We find that low-mass galaxies ($$M_\text{stars} \lesssim 10^7\, {\text{M}_{\odot }}$$) are the main drivers of reionization above z ≳ 7, while high-mass galaxies ($$M_\text{stars} \gtrsim 10^8\, {\text{M}_{\odot }}$$) dominate the escaped ionizing photon budget at lower redshifts. We find a strong dependence of fesc on the effective star formation rate (SFR) surface density defined as the SFR per gas mass per escape area, i.e. $$\bar{\Sigma }_\text{SFR} = \text{SFR}/M_\text{gas}/R_{200}^2$$. The variation in halo escape fractions decreases for higher mass haloes, which can be understood from the more settled galactic structure, SFR stability, and fraction of sightlines within each halo significantly contributing to the escaped flux. Dust is capable of reducing the escape fractions of massive galaxies, but the impact on the global fesc depends on the dust model. Finally, active galactic nuclei are unimportant for reionization in thesan and their escape fractions are lower than stellar ones due to being located near the centres of galaxy gravitational potential wells.more » « less
-
ABSTRACT Backsplash galaxies are galaxies that once resided inside a cluster, and have migrated back outside as they move towards the apocentre of their orbit. The kinematic properties of these galaxies are well understood, thanks to the significant study of backsplashers in dark matter-only simulations, but their intrinsic properties are not well-constrained due to modelling uncertainties in subgrid physics, ram pressure stripping, dynamical friction, and tidal forces. In this paper, we use the IllustrisTNG300-1 simulation, with a baryonic resolution of Mb ≈ 1.1 × 107 M⊙, to study backsplash galaxies around 1302 isolated galaxy clusters with mass 1013.0 < M200,mean/M⊙ < 1015.5. We employ a decision tree classifier to extract features of galaxies that make them likely to be backsplash galaxies, compared to nearby field galaxies, and find that backsplash galaxies have low gas fractions, high mass-to-light ratios, large stellar sizes, and low black hole occupation fractions. We investigate in detail the origins of these large sizes, and hypothesize their origins are linked to the tidal environments in the cluster. We show that the black hole recentring scheme employed in many cosmological simulations leads to the loss of black holes from galaxies accreted into clusters, and suggest improvements to these models. Generally, we find that backsplash galaxies are a useful population to test and understand numerical galaxy formation models due to their challenging environments and evolutionary pathways that interact with poorly constrained physics.more » « less
-
ABSTRACT Cosmological simulations serve as invaluable tools for understanding the Universe. However, the technical complexity and substantial computational resources required to generate such simulations often limit their accessibility within the broader research community. Notable exceptions exist, but most are not suited for simultaneously studying the physics of galaxy formation and cosmic reionization during the first billion years of cosmic history. This is especially relevant now that a fleet of advanced observatories (e.g. James Webb Space Telescope, Nancy Grace Roman Space Telescope, SPHEREx, ELT, SKA) will soon provide an holistic picture of this defining epoch. To bridge this gap, we publicly release all simulation outputs and post-processing products generated within the thesan simulation project at www.thesan-project.com. This project focuses on the z ≥ 5.5 Universe, combining a radiation-hydrodynamics solver (arepo-rt), a well-tested galaxy formation model (IllustrisTNG) and cosmic dust physics to provide a comprehensive view of the Epoch of Reionization. The thesan suite includes 16 distinct simulations, each varying in volume, resolution, and underlying physical models. This paper outlines the unique features of these new simulations, the production and detailed format of the wide range of derived data products, and the process for data retrieval. Finally, as a case study, we compare our simulation data with a number of recent observations from the James Webb Space Telescope, affirming the accuracy and applicability of thesan. The examples also serve as prototypes for how to utilize the released data set to perform comparisons between predictions and observations.more » « less
An official website of the United States government
