skip to main content

Search for: All records

Creators/Authors contains: "Borrow, Josh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We explore how the splashback radius (Rsp) of galaxy clusters, measured using the number density of the subhalo population, changes based on various selection criteria using the IllustrisTNG cosmological galaxy formation simulation. We identify Rsp by extracting the steepest radial gradient in a stacked set of clusters in 0.5 dex wide mass bins, with our clusters having halo masses 1013 ≤ M200,mean/M⊙ ≤ 1015. We apply cuts in subhalo mass, galaxy stellar mass, i-band absolute magnitude, and specific star formation rate. We find that, generally, galaxies of increasing mass and luminosity trace smaller measured splashback radii relative to the intrinsic dark matter radius. We also show that quenched galaxies may be used to reliably reconstruct the dark matter splashback radius. This trend is likely due to changes in the galaxy population. Additionally, we are able to reconcile different observational predictions that Rsp based upon galaxy number counts and dark matter may either align or show significant offset (e.g. those using optically or SZ-selected clusters) through the selection functions that these studies employ. Finally, we demonstrate that changes in Rsp measured through number counts are not due to a simple change in galaxy abundance inside and outside of the cluster.
    Free, publicly-accessible full text available April 26, 2023
  2. Abstract We present an update to the framework called Simulator of Galaxy Millimeter/submillimeter Emission ( sígame ). sígame derives line emission in the far-infrared (FIR) for galaxies in particle-based cosmological hydrodynamics simulations by applying radiative transfer and physics recipes via a postprocessing step after completion of the simulation. In this version, a new technique is developed to model higher gas densities by parameterizing the probability distribution function (PDF) of the gas density in higher-resolution simulations run with the pseudo-Lagrangian, Voronoi mesh code arepo . The parameterized PDFs are used as a look-up table, and reach higher densities than in previous work. sígame v3 is tested on redshift z = 0 galaxies drawn from the simba cosmological simulation for eight FIR emission lines tracing vastly different phases of the interstellar medium. This version of sígame includes dust radiative transfer with S kirt and high-resolution photoionization models with C loudy , the latter sampled according to the density PDF of the arepo simulations to augment the densities in the cosmological simulation. The quartile distributions of the predicted line luminosities overlap with the observed range for nearby galaxies of similar star formation rate (SFR) for all but two emission lines: [O i ]63more »and CO(3–2), which are overestimated by median factors of 1.3 and 1.0 dex, respectively, compared to the observed line–SFR relation of mixed-type galaxies. We attribute the remaining disagreement with observations to the lack of precise attenuation of the interstellar light on sub-grid scales (≲200 pc) and differences in sample selection.« less