skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Borrow, Josh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We derive the central stellar velocity dispersion function (VDF) for quiescent galaxies in 280 massive clusters withlog(M200/M)>14in IllustrisTNG300. The VDF is an independent tracer of the dark matter mass distribution of subhalos in galaxy clusters. Based on the IllustrisTNG cluster catalog, we select quiescent member subhalos with a specific star formation rate <2 × 10−11yr−1and stellar masslog(M*/M)>9. We then simulate fiber spectroscopy to measure the stellar velocity dispersion of the simulated galaxies; we compute the line-of-sight velocity dispersions of star particles within a cylindrical volume that penetrates the core of each subhalo. We construct the VDFs for quiescent subhalos withinR200. The simulated cluster VDF exceeds the simulated field VDF forlogσ*>2.2, indicating the preferential formation of large velocity dispersion galaxies in dense environments. The excess is similar in simulations and in the observations. We also compare the simulated VDF for the three most massive clusters withlog(M200/M)>15with the observed VDF for the two most massive clusters in the local Universe, Coma and A2029. Intriguingly, the simulated VDFs are significantly lower forlogσ*>2.0. This discrepancy results from (1) a smaller number of subhalos withlog(M*/M)>10in TNG300 compared to the observed clusters, and (2) a significant offset between the observed and simulatedM*σ*relations. The consistency in the overall shape of the observed and simulated VDFs offers a unique window into galaxy and structure formation in simulations.

     
    more » « less
  2. ABSTRACT

    We illuminate the altered evolution of galaxies in clusters compared to central galaxies by tracking galaxies in the IllustrisTNG300 simulation as they enter isolated clusters of mass 1013 < M200,mean/M⊙ < 1015 (at z = 0). We demonstrate significant trends in galaxy properties with residence time (time since first infall) and that there is a population of galaxies that remain star forming even many Gyr after their infall. By comparing the properties of galaxies at their infall time to their properties at z = 0, we show how scaling relations, like the stellar-to-halo mass ratio, shift as galaxies live in the cluster environment. Galaxies with a residence time of 10 Gyr increase their stellar-to-halo mass ratio, by around 1 dex. As measurements of the steepest slope of the galaxy cluster number density profile (Rst), frequently used as a proxy for the splashback radius, have been shown to depend strongly on galaxy selection, we show how Rst depends on galaxy residence time. Using galaxies with residence times less than one cluster crossing time (≈5 Gyr) to measure Rst leads to significant offsets relative to using the entire galaxy population. Galaxies must have had the opportunity to ‘splash back’ to the first caustic to trace out a representative value of Rst, potentially leading to issues for galaxy surveys using ultraviolet-selected galaxies. Our work demonstrates that the evolution of cluster galaxies continues well into their lifetime in the cluster and departs from a typical central galaxy evolutionary path.

     
    more » « less
  3. ABSTRACT

    We investigate galaxy sizes at redshift $z\gtrsim 6$ with the cosmological radiation-magnetohydrodynamic simulation suite thesan(-hr). These simulations simultaneously capture reionization of the large-scale intergalactic medium and resolved galaxy properties. The intrinsic sizes ($r^{\ast }_{1/2}$) of simulated galaxies increase moderately with stellar mass at $M_{\ast } \lesssim 10^{8}{\, \rm M_\odot}$ and decrease fast at larger masses, resulting in a hump feature at $M_{\ast }\sim 10^{8}{\, \rm M_\odot}$ that is insensitive to redshift. Low-mass galaxies are in the initial phase of size growth and are better described by a spherical shell model with feedback-driven outflows competing with the cold inflowing gas streams. In contrast, massive galaxies fit better with the disc formation model. They generally experience a phase of rapid compaction and gas depletion, likely driven by internal disc instability rather than external processes. We identify four compact quenched galaxies in the $(95.5\, {\rm cMpc})^{3}$ volume of thesan-1 at $z\simeq 6$ and their quenching follows reaching a characteristic stellar surface density akin to the massive compact galaxies at cosmic noon. Compared to observations, we find that the median ultraviolet effective radius ($R^{\rm UV}_{\rm eff}$) of simulated galaxies is at least three times larger than the observed ones at $M_{\ast }\lesssim 10^{9}{\, \rm M_\odot}$ or $M_{\rm UV}\gtrsim -20$ at $6 \lesssim z \lesssim 10$. The population of compact galaxies ($R^{\rm UV}_{\rm eff}\lesssim 300\, {\rm pc}$) galaxies at $M_{\ast }\sim 10^{8}{\, \rm M_\odot}$ is missing in our simulations. This inconsistency persists across many other cosmological simulations with different galaxy formation models and demonstrates the potential of using galaxy morphology to constrain physics of galaxy formation at high redshifts.

     
    more » « less
  4. ABSTRACT

    An important characteristic of cosmic hydrogen reionization is the growth of ionized gas bubbles surrounding early luminous objects. Ionized bubble sizes are beginning to be probed using Lyman α emission from high-redshift galaxies, and will also be probed by upcoming 21 cm maps. We present results from a study of bubble sizes using the state-of-the-art thesan radiation-hydrodynamics simulation suite, which self-consistently models radiation transport and realistic galaxy formation. We employ the mean free path method and track the evolution of the effective ionized bubble size at each point (Reff) throughout the Epoch of Reionization. We show that there is a slow growth period for regions ionized early, but a rapid ‘flash ionization’ process for regions ionized later as they immediately enter a large, pre-existing bubble. We also find that bright sources are preferentially in larger bubbles, and find consistency with recent observational constraints at z ≳ 9, but tension with idealized Lyman α damping-wing models at z ≈ 7. We find that high-overdensity regions have larger characteristic bubble sizes, but the correlation decreases as reionization progresses, likely due to runaway formation of large percolated bubbles. Finally, we compare the redshift at which a region transitions from neutral to ionized (zreion) with the time it takes to reach a given bubble size and conclude that zreion is a reasonable local probe of small-scale bubble size statistics ($R_\text{eff} \lesssim 1\, \rm {cMpc}$). However, for larger bubbles, the correspondence between zreion and size statistics weakens due to the time delay between the onset of reionization and the expansion of large bubbles, particularly at high redshifts.

     
    more » « less
  5. The distribution of offsets between the brightest cluster galaxies of galaxy clusters and the centroid of their dark matter distributions is a promising probe of the underlying dark matter physics. In particular, since this distribution is sensitive to the shape of the potential in galaxy cluster cores, it constitutes a test of dark matter self-interaction on the largest mass scales in the universe. We examine these offsets in three suites of modern cosmological simulations; IllustrisTNG, MillenniumTNG and BAHAMAS. For clusters above , we examine the dependence of the offset distribution on gravitational softening length, the method used to identify centroids, redshift, mass, baryonic physics, and establish the stability of our results with respect to various nuisance parameter choices. We find that offsets are overwhelmingly measured to be smaller than the minimum converged length scale in each simulation, with a median offset of in the highest resolution simulation considered, TNG300-1, which uses a gravitational softening length of . We also find that centroids identified via source extraction on smoothed dark matter and stellar particle data are consistent with the potential minimum, but that observationally relevant methods sensitive to cluster strong gravitational lensing scales, or those using the the “light traces mass” approach, in this context meaning gas is used as a tracer for the potential, can overestimate offsets by factors of10and30, respectively. This has the potential to reduce tensions with existing offset measurements which have served as evidence for a nonzero dark matter self-interaction cross section.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  6. ABSTRACT

    We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $k \sim 10\, h$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.

     
    more » « less
  7. ABSTRACT

    We investigate how feedback and environment shapes the X-ray scaling relations of early-type galaxies (ETGs), especially at the low-mass end. We select central-ETGs from the TNG100 box of IllustrisTNG that have stellar masses $\log _{10}(M_{\ast }/\mathrm{M_{\odot }})\in [10.7, 11.9]$. We derive mock X-ray luminosity (LX, 500) and spectroscopic-like temperature (Tsl, 500) of hot gas within R500 of the ETG haloes using the MOCK-X pipeline. The scaling between LX, 500 and the total mass within 5 effective radii ($M_{5R_{\rm e}}$) agrees well with observed ETGs from Chandra. IllustrisTNG reproduces the observed increase in scatter of LX, 500 towards lower masses, and we find that ETGs with $\log _{10} (M_{5R_{\rm e}}/\mathrm{M_{\odot }}) \leqslant 11.5$ with above-average LX, 500 experienced systematically lower cumulative kinetic AGN feedback energy historically (vice versa for below-average ETGs). This leads to larger gas mass fractions and younger stellar populations with stronger stellar feedback heating, concertedly resulting in the above-average LX, 500. The LX, 500–Tsl, 500 relation shows a similar slope to the observed ETGs but the simulation systematically underestimates the gas temperature. Three outliers that lie far below the LX–Tsl relation all interacted with larger galaxy clusters recently and demonstrate clear features of environmental heating. We propose that the distinct location of these backsplash ETGs in the LX–Tsl plane could provide a new way of identifying backsplash galaxies in future X-ray surveys.

     
    more » « less
  8. ABSTRACT

    Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.

     
    more » « less
  9. ABSTRACT

    Cosmological simulations serve as invaluable tools for understanding the Universe. However, the technical complexity and substantial computational resources required to generate such simulations often limit their accessibility within the broader research community. Notable exceptions exist, but most are not suited for simultaneously studying the physics of galaxy formation and cosmic reionization during the first billion years of cosmic history. This is especially relevant now that a fleet of advanced observatories (e.g. James Webb Space Telescope, Nancy Grace Roman Space Telescope, SPHEREx, ELT, SKA) will soon provide an holistic picture of this defining epoch. To bridge this gap, we publicly release all simulation outputs and post-processing products generated within the thesan simulation project at www.thesan-project.com. This project focuses on the z ≥ 5.5 Universe, combining a radiation-hydrodynamics solver (arepo-rt), a well-tested galaxy formation model (IllustrisTNG) and cosmic dust physics to provide a comprehensive view of the Epoch of Reionization. The thesan suite includes 16 distinct simulations, each varying in volume, resolution, and underlying physical models. This paper outlines the unique features of these new simulations, the production and detailed format of the wide range of derived data products, and the process for data retrieval. Finally, as a case study, we compare our simulation data with a number of recent observations from the James Webb Space Telescope, affirming the accuracy and applicability of thesan. The examples also serve as prototypes for how to utilize the released data set to perform comparisons between predictions and observations.

     
    more » « less
  10. ABSTRACT

    Using high-resolution cosmological radiation-hydrodynamic (RHD) simulations (thesan-hr), we explore the impact of alternative dark matter (altDM) models on galaxies during the Epoch of Reionization. The simulations adopt the IllustrisTNG galaxy formation model. We focus on altDM models that exhibit small-scale suppression of the matter power spectrum, namely warm dark matter (WDM), fuzzy dark matter (FDM), and interacting dark matter (IDM) with strong dark acoustic oscillations (sDAO). In altDM scenarios, both the halo mass functions and the ultraviolet luminosity functions at z ≳ 6 are suppressed at the low-mass/faint end, leading to delayed global star formation and reionization histories. However, strong non-linear effects enable altDM models to ‘catch up’ with cold dark matter (CDM) in terms of star formation and reionization. The specific star formation rates are enhanced in halos below the half-power mass in altDM models. This enhancement coincides with increased gas abundance, reduced gas depletion times, more compact galaxy sizes, and steeper metallicity gradients at the outskirts of the galaxies. These changes in galaxy properties can help disentangle altDM signatures from a range of astrophysical uncertainties. Meanwhile, it is the first time that altDM models have been studied in RHD simulations of galaxy formation. We uncover significant systematic uncertainties in reionization assumptions on the faint-end luminosity function. This underscores the necessity of accurately modeling the small-scale morphology of reionization in making predictions for the low-mass galaxy population. Upcoming James Webb Space Telescope imaging surveys of deep lensed fields hold potential for uncovering the faint low-mass galaxy population, which could provide constraints on altDM models.

     
    more » « less