skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bose, Sayak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. From the near-Earth solar wind to the intracluster medium of galaxy clusters, collisionless, high-beta, magnetized plasmas pervade our universe. Energy and momentum transport from large-scale fields and flows to small-scale motions of plasma particles is ubiquitous in these systems, but a full picture of the underlying physical mechanisms remains elusive. The transfer is often mediated by a turbulent cascade of Alfvénic fluctuations as well as a variety of kinetic instabilities; these processes tend to be multi-scale and/or multi-dimensional, which makes them difficult to study using spacecraft missions and numerical simulations alone. Meanwhile, existing laboratory devices struggle to produce the collisionless, high ion beta ($$\beta _i \gtrsim 1$$), magnetized plasmas across the range of scales necessary to address these problems. As envisioned in recent community planning documents, it is therefore important to build a next generation laboratory facility to create a$$\beta _i \gtrsim 1$$, collisionless, magnetized plasma in the laboratory for the first time. A working group has been formed and is actively defining the necessary technical requirements to move the facility towards a construction-ready state. Recent progress includes the development of target parameters and diagnostic requirements as well as the identification of a need for source-target device geometry. As the working group is already leading to new synergies across the community, we anticipate a broad community of users funded by a variety of federal agencies (including National Aeronautics and Space Administration, Department of Energy and National Science Foundation) to make copious use of the future facility. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Abstract We have studied the propagation of inertial Alfvén waves through parallel gradients in the Alfvén speed using the Large Plasma Device at the University of California, Los Angeles. The reflection and transmission of Alfvén waves through inhomogeneities in the background plasma are important for understanding wave propagation, turbulence, and heating in space, laboratory, and astrophysical plasmas. Here we present inertial Alfvén waves under conditions relevant to solar flares and the solar corona. We find that the transmission of the inertial Alfvén waves is reduced as the sharpness of the gradient is increased. Any reflected waves were below the detection limit of our experiment, and reflection cannot account for all of the energy not transmitted through the gradient. Our findings indicate that, for both kinetic and inertial Alfvén waves, the controlling parameter for the transmission of the waves through an Alfvén speed gradient is the ratio of the Alfvén wavelength along the gradient divided by the scale length of the gradient. Furthermore, our results suggest that an as-yet-unidentified damping process occurs in the gradient. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026