Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Satellites have provided high-resolution ( < 100 m) water color (i.e., remote sensing reflectance) and thermal emission imagery of aquatic environments since the early 1980s; however, global operational water quality products based on these data are not readily available (e.g., temperature, chlorophyll- a , turbidity, and suspended particle matter). Currently, because of the postprocessing required, only users with expressive experience can exploit these data, limiting their utility. Here, we provide paths (recipes) for the nonspecialist to access and derive water quality products, along with examples of applications, from sensors on board Landsat-5, Landsat-7, Landsat-8, Landsat-9, Sentinel-2A, and Sentinel-2B. We emphasize that the only assured metric for success in product derivation and the assigning of uncertainties to them is via validation with in situ data. We hope that this contribution will motivate nonspecialists to use publicly available high-resolution satellite data to study new processes and monitor a variety of novel environments that have received little attention to date.Free, publicly-accessible full text available January 1, 2024
-
Aquaculture of the eastern oyster, Crassostrea virginica , is an expanding industry in the US, particularly in the Gulf of Maine. High resolution ocean color satellites launched in the last decade potentially provide aquaculture-relevant water-quality parameters at farm scales. However, these parameters, such as temperature, suspended particulate matter (SPM), and Chlorophyll a (Chl a), need to be derived by interested users. Water quality parameters are derived first by applying an atmospheric correction and then estimating the target parameter with a specific algorithm. Here, we use five atmospheric correction schemes and two algorithms to derive SPM and Chl a from the Sentinel 2A&B satellites’ multispectral instrument data. The best estimates of SPM and Chl a are determined by comparison with in situ observations from buoys. Together with SST from Landsat-8, we estimated an Oyster Suitability Index (OSI) along the transects in five estuaries in the Gulf of Maine as well as applied a novel particulate organic matter algorithm, a function of Chl a and SPM in low turbidity estuaries. We then apply the optimal approaches to derive water quality parameters to study five different estuaries in Maine and find that existing high-yield oyster aquaculture farms are found in areas with elevatedmore »
-
Measuring plankton and associated variables as part of ocean time-series stations has the potential to revolutionize our understanding of ocean biology and ecology and their ties to ocean biogeochemistry. It will open temporal scales (e.g., resolving diel cycles) not typically sampled as a function of depth. In this review we motivate the addition of biological measurements to time-series sites by detailing science questions they could help address, reviewing existing technology that could be deployed, and providing examples of time-series sites already deploying some of those technologies. We consider here the opportunities that exist through global coordination within the OceanSITES network for long-term (climate) time series station in the open ocean. Especially with respect to data management, global solutions are needed as these are critical to maximize the utility of such data. We conclude by providing recommendations for an implementation plan.
-
Abstract Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially
Symbiodinium ), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease. -
In this article, we present Bio-GO-SHIP, a new ocean observing program that will incorporate sustained and consistent global biological ocean observations into the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP). The goal of Bio-GO-SHIP is to produce systematic and consistent biological observations during global ocean repeat hydrographic surveys, with a particular focus on the planktonic ecosystem. Ocean plankton are an essential component of the earth climate system, form the base of the oceanic food web and thereby play an important role in influencing food security and contributing to the Blue Economy. Despite its importance, ocean biology is largely under-sampled in time and space compared to physical and chemical properties. This lack of information hampers our ability to understand the role of plankton in regulating biogeochemical processes and fueling higher trophic levels, now and in future ocean conditions. Traditionally, many of the methods used to quantify biological and ecosystem essential ocean variables (EOVs), measures that provide valuable information on the ecosystem, have been expensive and labor- and time-intensive, limiting their large-scale deployment. In the last two decades, new technologies have been developed and matured, making it possible to greatly expand our biological ocean observing capacity. These technologies, including cell imaging, bio-opticalmore »
-
We derived the angular response function (
) for scattering sensors that automatically satisfies the normalization criterion and its corresponding weight ( ). ’s, derived for two commercial sensors, HydroScat-6 (HOBI Labs) and ECO-BB (Sea-Bird Inc.), agrees well with the Monte Carlo simulation and direct measurements. The backscattering measured for microbeads of known sizes agrees better with Mie calculation when the derived was applied. We deduced that the reduction of with increasing attenuation coefficient is related to path length attenuation and showed that this theoretically derived correction factor performs better than the default methods for the two commercial backscattering sensors. The analysis conducted in this study also leads to an estimate of uncertainty budget for the two sensors. The major uncertainty for ECO-BB is associated with its angular response function because of its wide field of view, whereas the main uncertainty for the HydrScat-6 is due to attenuation correction because of its relatively long path length. -
Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time. Methods: Here, we present a new suite of real-time quality-control tests and apply them to the current global BBP Argo dataset. The tests were developed by expert BBP users and Argo data managers and have been implemented on a snapshot of the entire Argo dataset. Results: The new tests are able to automatically flag most of the “bad” BBP profiles from the raw dataset. Conclusions: The proposed tests have been approved by the Biogeochemical-Argo Data Management Team and will be implemented by the Argo Data Assembly Centres to deliver real-time quality-controlled profiles of optical backscattering. Provided they reach a pressure of about 1000 dbar, these tests could also be applied to BBP profiles collected by other platforms.
-
Background: Biogeochemical-Argo floats are collecting an unprecedented number of profiles of optical backscattering measurements in the global ocean. Backscattering (BBP) data are crucial to understanding ocean particle dynamics and the biological carbon pump. Yet, so far, no procedures have been agreed upon to quality control BBP data in real time. Methods: Here, we present a new suite of real-time quality-control tests and apply them to the current global BBP Argo dataset. The tests were developed by expert BBP users and Argo data managers and have been implemented on a snapshot of the entire Argo dataset. Results: The new tests are able to automatically flag most of the “bad” BBP profiles from the raw dataset. Conclusions: The proposed tests have been approved by the Biogeochemical-Argo Data Management Team and will be implemented by the Argo Data Assembly Centres to deliver real-time quality-controlled profiles of optical backscattering. Provided they reach a pressure of about 1000 dbar, these tests could also be applied to BBP profiles collected by other platforms.
-
Abstract Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle.