skip to main content


This content will become publicly available on January 1, 2024

Title: Recipes for the Derivation of Water Quality Parameters Using the High-Spatial-Resolution Data from Sensors on Board Sentinel-2A, Sentinel-2B, Landsat-5, Landsat-7, Landsat-8, and Landsat-9 Satellites
Satellites have provided high-resolution ( < 100 m) water color (i.e., remote sensing reflectance) and thermal emission imagery of aquatic environments since the early 1980s; however, global operational water quality products based on these data are not readily available (e.g., temperature, chlorophyll- a , turbidity, and suspended particle matter). Currently, because of the postprocessing required, only users with expressive experience can exploit these data, limiting their utility. Here, we provide paths (recipes) for the nonspecialist to access and derive water quality products, along with examples of applications, from sensors on board Landsat-5, Landsat-7, Landsat-8, Landsat-9, Sentinel-2A, and Sentinel-2B. We emphasize that the only assured metric for success in product derivation and the assigning of uncertainties to them is via validation with in situ data. We hope that this contribution will motivate nonspecialists to use publicly available high-resolution satellite data to study new processes and monitor a variety of novel environments that have received little attention to date.  more » « less
Award ID(s):
2018851
NSF-PAR ID:
10438642
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Remote Sensing
Volume:
3
ISSN:
2694-1589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Melt and supraglacial lakes are precursors to ice shelf collapse and subsequent accelerated ice sheet mass loss. We used data from the Landsat 8 and Sentinel-2 satellites to develop a threshold-based method for detection of lakes found on the Antarctic ice shelves, calculate their depths and thus their volumes. To achieve this, we focus on four key areas: the Amery, Roi Baudouin, Nivlisen, and Riiser-Larsen ice shelves, which are all characterized by extensive surface meltwater features. To validate our products, we compare our results against those obtained by an independent method based on a supervised classification scheme (e.g., Random Forest algorithm). Additional verification is provided by manual inspection of results for nearly 1000 Landsat 8 and Sentinel-2 images. Our dual-sensor approach will enable constructing high-resolution time series of lake volumes. Therefore, to ensure interoperability between the two datasets, we evaluate depths from contemporaneous Landsat 8 and Sentinel-2 image pairs. Our assessments point to a high degree of correspondence, producing an average R2 value of 0.85, no bias, and an average RMSE of 0.2 m. We demonstrate our method’s ability to characterize lake evolution by presenting first evidence of drainage events outside of the Antarctic Peninsula on the Amery Ice shelf. The methods presented here pave the way to upscaling throughout the Landsat 8 and Sentinel-2 observational record across Antarctica to produce a first-ever continental dataset of supraglacial lake volumes. Such a dataset will improve our understanding of the influence of surface hydrology on ice shelf stability, and thus, future projections of Antarctica’s contribution to sea level rise. 
    more » « less
  2. Abstract

    Conventional satellite platforms are limited in their ability to monitor rivers at fine spatial and temporal scales: suffering from unavoidable trade‐offs between spatial and temporal resolutions. CubeSat constellations, however, can provide global data at high spatial and temporal resolutions, albeit with reduced spectral information. This study provides a first assessment of using CubeSat data for river discharge estimation in both gauged and ungauged settings. Discharge was estimated for 11 Arctic rivers with sizes ranging from 16 to >1,000 m wide using the Bayesian at‐many‐stations hydraulic geometry‐Manning algorithm (BAM). BAM‐at‐many‐stations hydraulic geometry solves for hydraulic geometry parameters to estimate flow and requires only river widths as input. Widths were retrieved from Landsat 8 and Sentinel‐2 data sets and a CubeSat (the Planet company) data set, as well as their fusions. Results show satellite data fusion improves discharge estimation for both large (>100 m wide) and medium (40–100 m wide) rivers by increasing the number of days with a discharge estimation by a factor of 2–6 without reducing accuracy. Narrow rivers (<40 m wide) are too small for Landsat and Sentinel‐2 data sets, and their discharge is also not well estimated using CubeSat data alone, likely because the four‐band sensor cannot resolve water surfaces accurately enough. BAM technique outperforms space‐based rating curves when gauge data are available, and its accuracy is acceptable when no gauge data are present (instead relying on global reanalysis for discharge priors). Ultimately, we conclude that the data fusion presented here is a viable approach toward improving discharge estimates in the Arctic, even in ungauged basins.

     
    more » « less
  3. Abstract

    Understanding and attributing changes to water quality is essential to the study and management of coastal ecosystems and the ecological functions they sustain (e.g., primary productivity, predation, and submerged aquatic vegetation growth). However, describing patterns of water clarity—a key aspect of water quality—over meaningful scales in space and time is challenged by high spatial and temporal variability due to natural and anthropogenic processes. Regionally tuned satellite algorithms can provide a more complete understanding of coastal water clarity changes and drivers. In this study, we used open‐access satellite data and low‐cost in situ methods to improve estimates of water clarity in an optically complex coastal water body. Specifically, we created a remote sensing water clarity product by compiling Landsat‐8 and Sentinel‐2 reflectance data with long‐term Secchi depth measurements at 12 sites over 8 years in a shallow turbid coastal lagoon system in Virginia, USA. Our satellite‐based model explained ∼33% of the variation in in situ water clarity. Our approach increases the spatiotemporal coverage of in situ water clarity data and improves estimates from bio‐optical algorithms that overpredicted water clarity. This could lead to a better understanding of water clarity changes and drivers to better predict how water quality will change in the future.

     
    more » « less
  4. null (Ed.)
    Surface albedo is a fundamental radiative parameter as it controls the Earth’s energy budget and directly affects the Earth’s climate. Satellite observations have long been used to capture the temporal and spatial variations of surface albedo because of their continuous global coverage. However, space-based albedo products are often affected by errors in the atmospheric correction, multi-angular bi-directional reflectance distribution function (BRDF) modelling, as well as spectral conversions. To validate space-based albedo products, an in situ tower albedometer is often used to provide continuous “ground truth” measurements of surface albedo over an extended area. Since space-based albedo and tower-measured albedo are produced at different spatial scales, they can be directly compared only for specific homogeneous land surfaces. However, most land surfaces are inherently heterogeneous with surface properties that vary over a wide range of spatial scales. In this work, tower-measured albedo products, including both directional hemispherical reflectance (DHR) and bi-hemispherical reflectance (BHR), are upscaled to coarse satellite spatial resolutions using a new method. This strategy uses high-resolution satellite derived surface albedos to fill the gaps between the albedometer’s field-of-view (FoV) and coarse satellite scales. The high-resolution surface albedo is generated from a combination of surface reflectance retrieved from high-resolution Earth Observation (HR-EO) data and moderate resolution imaging spectroradiometer (MODIS) BRDF climatology over a larger area. We implemented a recently developed atmospheric correction method, the Sensor Invariant Atmospheric Correction (SIAC), to retrieve surface reflectance from HR-EO (e.g., Sentinel-2 and Landsat-8) top-of-atmosphere (TOA) reflectance measurements. This SIAC processing provides an estimated uncertainty for the retrieved surface spectral reflectance at the HR-EO pixel level and shows excellent agreement with the standard Landsat 8 Surface Reflectance Code (LaSRC) in retrieving Landsat-8 surface reflectance. Atmospheric correction of Sentinel-2 data is vastly improved by SIAC when compared against the use of in situ AErosol RObotic NETwork (AERONET) data. Based on this, we can trace the uncertainty of tower-measured albedo during its propagation through high-resolution EO measurements up to coarse satellite scales. These upscaled albedo products can then be compared with space-based albedo products over heterogeneous land surfaces. In this study, both tower-measured albedo and upscaled albedo products are examined at Ground Based Observation for Validation (GbOV) stations (https://land.copernicus.eu/global/gbov/), and used to compare with satellite observations, including Copernicus Global Land Service (CGLS) based on ProbaV and VEGETATION 2 data, MODIS and multi-angle imaging spectroradiometer (MISR). 
    more » « less
  5. null (Ed.)
    Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest. 
    more » « less