skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowman, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 4, 2026
  2. Abstract Detailed geochronology from two compositionally distinct generations of dikes and sills intruded into the Alta metamorphic aureole, north‐central Utah, complement previous geochronologic studies from the Alta stock, providing information on the timing of magmatism and the nature of emplacement. Uranium/thorium‐lead dates and chemistry were measured in zircon and monazite from these intrusions and associated reaction selvages in hornfels by split‐stream laser ablation techniques. Concordant zircon U‐Pb dates (n = 532) define a dispersed population of dates that range from ∼38 to 32 Ma. Monazite Th‐Pb dates (n = 888) from granodioritic compositions range from ∼40 to 32 Ma. Evaluation of208Pb/232Th and207Pb/206Pb‐corrected dates with respect to common Pb, U and Th/U values allows rigorous evaluation of the effects of excess206Pb in these young monazites, yielding concordant208Pb/232Th and207Pb/206Pb‐corrected dates in monazites from the granodiorite, consistent with zircon dates from the same thin sections. Leucogranite sills and dikes, which cross‐cut the older granodiorite, have younger monazite dates from ∼33 to 28 Ma. Elevated heavy rare earth element concentrations and trends of larger negative Eu anomalies in the youngest monazites suggest crystallization from an evolved melt. Integration of these new geochronology results and field relationships with prior results from the Alta stock indicate the granodiorite represents the oldest material emplaced in the Alta system. Leucogranite aplite/pegmatite dikes and sills in the inner Alta aureole were emplaced during the final stage of Alta stock construction by injection of evolved water‐rich magmas. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. We explore the properties of interferometric data from high-redshift 21 cm measurements using the Murchison Widefield Array (MWA). These data contain the redshifted 21 cm signal, contamination from continuum foreground sources, and radiometric noise. The 21 cm signal from the Epoch of Reionization (EoR) is expected to be highly Gaussian, which motivates the use of the power spectrum as an effective statistical tool for extracting astrophysical information. We find that foreground contamination introduces non-Gaussianity into the distribution of measurements and then use this information to separate Gaussian from the non-Gaussian signal. We present improved upper limits on the 21 cm EoR power spectrum from the MWA using a Gaussian component of the data, based on the existing analysis from C. D. Nunhokee et al. 2025. This is extracted as the best-fitting Gaussian to the measured data. Our best 2σ (thermal+sample variance) limit for 268 hr of data improves from (30.2 mK)2 to (23.0 mK)2 at z = 6.5 for the East–West polarization, and from (39.2 mK)2 to (21.7 mK)2 = 470 mK2 in North–South. The best limits at z = 6.8 (z = 7.0) improve to P < (25.9 mK)2 (P < (32.0 mK)2) and k = 0.18h Mpc‑1 (k = 0.21h Mpc‑1). Results are compared with realistic simulations, which indicate that leakage from foreground contamination is a source of the non-Gaussian behavior. 
    more » « less
    Free, publicly-accessible full text available September 30, 2026
  4. This paper presents the spherically averaged 21 cm power spectrum derived from Epoch of Reionization (EoR) observations conducted with the Murchison Widefield Array (MWA). The analysis uses EoR0-field data, centered at (R.A. = 0h, decl. = ‑27∘), collected between 2013 and 2023. Building on the improved methodology described in C. M. Trott et al. (2024), we incorporate additional data quality control techniques introduced in C. D. Nunhokee (2020). We report the lowest-power-level limits on the EoR power spectrum at redshifts z = 6.5, z = 6.8, and z = 7.0. These power levels, measured in the east–west polarization, are (30.2)2 mK2 at k = 0.18 h Mpc‑1, (31.2)2 mK2 at k = 0.18 h Mpc‑1, and (39.1)2 mK2 at k = 0.21 h Mpc‑1, respectively. The total integration time amounts to 268 hr. These results represent the deepest upper limits achieved by the MWA to date and provide the first evidence of the heated intergalactic medium at redshifts z = 6.5 to 7.0. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  5. Abstract Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change. 
    more » « less
  6. Abstract While basaltic volcanism is dominant during rifting and continental breakup, felsic magmatism may be a significant component of some rift margins. During International Ocean Discovery Program (IODP) Expedition 396 on the continental margin of Norway, a graphite‐garnet‐cordierite bearing dacitic unit (the Mimir dacite) was recovered in two holes within early Eocene sediments on Mimir High (Site U1570), a marginal high on the Vøring Transform Margin. Here, we present a comprehensive textural, petrological, and geochemical study of the Mimir dacite in order to assess its origin and discuss the geodynamic implications. The major mineral phases (garnet, cordierite, quartz, plagioclase, alkali feldspar) are hosted in a fresh rhyolitic, vesicular, glassy matrix that is locally mingled with sediments. The major element chemistry of garnet and cordierite, the presence of zircon inclusions with inherited cores, and thermobarometric calculations all support an upper crustal metapelitic origin. While most magma‐rich margin models favor crustal anatexis in the lower crust, thermobarometric calculations performed here show that the Mimir dacite was produced at upper‐crustal depths (<5 kbar, 18 km depth) and high temperature (750–800°C) with up to 3 wt% water content. In situ U‐Pb analyses on zircon inclusions give a magmatic crystallization age of 54.6 ± 1.1 Ma, consistent with emplacement that post‐dates the Paleocene‐Eocene Thermal Maximum. Our results suggest that the opening of the Northeast Atlantic was associated with a phase of low‐pressure, high‐temperature crustal anatexis preceding the main phase of magmatism. 
    more » « less
  7. ABSTRACT Interferometric experiments designed to detect the highly redshifted 21-cm signal from neutral hydrogen are producing increasingly stringent constraints on the 21-cm power spectrum, but some k-modes remain systematics-dominated. Mutual coupling is a major systematic that must be overcome in order to detect the 21-cm signal, and simulations that reproduce effects seen in the data can guide strategies for mitigating mutual coupling. In this paper, we analyse 12 nights of data from the Hydrogen Epoch of Reionization Array and compare the data against simulations that include a computationally efficient and physically motivated semi-analytic treatment of mutual coupling. We find that simulated coupling features qualitatively agree with coupling features in the data; however, coupling features in the data are brighter than the simulated features, indicating the presence of additional coupling mechanisms not captured by our model. We explore the use of fringe-rate filters as mutual coupling mitigation tools and use our simulations to investigate the effects of mutual coupling on a simulated cosmological 21-cm power spectrum in a ‘worst case’ scenario where the foregrounds are particularly bright. We find that mutual coupling contaminates a large portion of the ‘EoR Window’, and the contamination is several orders-of-magnitude larger than our simulated cosmic signal across a wide range of cosmological Fourier modes. While our fiducial fringe-rate filtering strategy reduces mutual coupling by roughly a factor of 100 in power, a non-negligible amount of coupling cannot be excised with fringe-rate filters, so more sophisticated mitigation strategies are required. 
    more » « less
    Free, publicly-accessible full text available July 7, 2026
  8. Microorganisms play critical roles in sea ice biogeochemical processes. However, microbes living within sea ice can be challenging to sample for scientific study. Because most techniques for microbial analysis are optimized for liquid samples, sea ice samples are typically melted first, often applying a buffering method to mitigate osmotic lysis. Here, we tested commonly used melting procedures on three different ice horizons of springtime, first year, land-fast Arctic sea ice to investigate potential methodological impacts on resulting measurements of cell abundance, photophysiology, and microbial community structure as determined by 16S and 18S rRNA gene amplicon sequencing. Specifically, we compared two buffering methods using NaCl solutions (“seawater,” melting the ice in an equal volume of 35-ppt solution, and “isohaline,” melting with a small volume of 250-ppt solution calculated to yield meltwater at estimated in situ brine salinity) to direct ice melting (no buffer addition) on both mechanically “shaved” and “non-shaved” samples. Shaving the ice shortened the melting process, with no significant impacts on the resulting measurements. The seawater buffer was best at minimizing cell lysis for this ice type, retaining the highest number of cells and chlorophyll a concentration. Comparative measurements of bacterial (16S) community structure highlighted ecologically relevant subsets of the community that were significantly more abundant in the buffered samples. The results for eukaryotic (18S) community structure were less conclusive. Taken together, our results suggest that an equivalent-volume seawater-salinity buffered melt is best at minimizing cell loss due to osmotic stress for springtime Arctic sea ice, but that either buffer will reduce bias in community composition when compared to direct melting. Overall, these findings indicate potential methodological biases that should be considered before developing a sea ice melting protocol for microbiological studies and afterwards, when interpreting biogeochemical or ecological meaning of the results. 
    more » « less
  9. null (Ed.)