Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Timing predictability is a precondition for successful communication over a covert timing channel. Real-time systems are particularly vulnerable to timing channels because real-time applications can easily have temporal locality due to limited uncertainty in schedules. In this paper, we show that real-time applications can create hidden information flow even when the temporal isolation among the time partitions is strictly enforced. We then introduce an online algorithm that randomizes time-partition schedules to reduce the temporal locality, while guaranteeing the schedulability of, and thus the temporal isolation among, time partitions. We also present an analysis of the cost of the randomization on the responsiveness of real-time tasks. From an implementation on a Linux-based real-time operating system, we validate the analysis and evaluate the scheduling overhead as well as the impact on an experimental real-time system.more » « less
-
null (Ed.)This paper presents a design framework for machine learning applications that operate in systems such as cyber-physical systems where time is a scarce resource. We manage the tradeoff between processing time and solution quality by performing as much preprocessing of data as time will allow. This approach leads us to a design framework in which there are two separate learning networks: one for preprocessing and one for the core application functionality. We show how these networks can be trained together and how they can operate in an anytime fashion to optimize performance.more » « less
-
null (Ed.)Modern generative techniques, deriving realistic data from incomplete or noisy inputs, require massive computation for rigorous results. These limitations hinder generative techniques from being incorporated in systems in resource-constrained environment, thus motivating methods that grant users control over the time-quality trade-offs for a reasonable "payoff" of execution cost. Hence, as a new paradigm for adaptively organizing and employing recurrent networks, we propose an architectural design for generative modeling achieving flexible quality. We boost the overall efficiency by introducing non-recurrent layers into stacked recurrent architectures. Accordingly, we design the architecture with no redundant recurrent cells so we avoid unnecessary overhead.more » « less
-
Deeper neural networks, especially those with extremely large numbers of internal parameters, impose a heavy computational burden in obtaining sufficiently high-quality results. These burdens are impeding the application of machine learning and related techniques to time-critical computing systems. To address this challenge, we are proposing an architectural approach for neural networks that adaptively trades off computation time and solution quality to achieve high-quality solutions with timeliness. We propose a novel and general framework, AnytimeNet, that gradually inserts additional layers, so users can expect monotonically increasing quality of solutions as more computation time is expended. The framework allows users to select on the fly when to retrieve a result during runtime. Extensive evaluation results on classification tasks demonstrate that our proposed architecture provides adaptive control of classification solution quality according to the available computation time.more » « less
-
Learning techniques are advancing the utility and capability of modern embedded systems. However, the challenge of incorporating learning modules into embedded systems is that computing resources are scarce. For such a resource-constrained environment, we have developed a framework for learning abstract information early and learning more concretely as time allows. The intermediate results can be utilized to prepare for early decisions/actions as needed. To apply this framework to a classification task, the datasets are categorized in an abstraction hierarchy. Then the framework classifies intermediate labels from the most abstract level to the most concrete. Our proposed method outperforms the existing approaches and reference base-lines in terms of accuracy. We show our framework with different architectures and on various benchmark datasets CIFAR-10, CIFAR-100, and GTSRB. We measure prediction times on GPU-equipped embedded computing platforms as well.more » « less